Forthcoming events in this series


Tue, 02 Feb 2010

15:45 - 16:45
L3

Mutations of Quivers in the Minimal Model Programme

Michael Wemyss
(Oxford)
Abstract

Following work of Bridgeland in the smooth case and Chen in the terminal singularities case, I will explain a proposal that extends the existence of flops for threefolds (and the required derived equivalences) to also cover canonical singularities.  Moreover this technique conjecturally says much more than just the existence of the flop, as it shows how the dual graph changes under the flop and also which curves in the flopped variety contract to points without contracting divisors.  This allows us to continue the Minimal Model Programme on the flopped variety in an easy way, thus producing many varieties birational to the given input.    

Tue, 26 Jan 2010

15:45 - 16:45
L3

(HoRSe seminar) Symmetric and reduced obstruction theories

Richard Thomas
(Imperial College London)
Abstract

I will describe some more of the deformation theory necessary for the first talk. This leads to a number of natural questions and counterexamples. This talk requires a strong stomach, or a fanatical devotion to symmetric obstruction theories.

Tue, 26 Jan 2010

14:00 - 15:00
SR1

(HoRSe seminar) GW/stable pairs on K3 surfaces

Richard Thomas
(Imperial College London)
Abstract
The Katz-Klemm-Vafa formula is a conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. In genus 0 it reduces to the (proved) Yau-Zaslow formula. I will explain how the correspondence between stable pairs and Gromov-Witten theory for toric 3-folds (proved by Maulik-Oblomkov-Okounkov-Pandharipande), some calculations with stable pairs (due to Kawai-Yoshioka) and some deformation theory lead to a proof of the KKV formula.
(This is joint work with Davesh Maulik and Rahul Pandharipande. Only they understand the actual formulae. People who like modular forms are not encouraged to come to this talk.)
Tue, 19 Jan 2010

15:45 - 16:45
L3

Big rational surfaces

Damiano Testa
(Oxford)
Abstract

The Cox ring of a variety is an analogue of the homogeneous coordinate ring of projective space. Cox rings are not defined for every variety and even when they are defined, they need not be finitely generated. Varieties for which the Cox ring is finitely generated are called Mori dream spaces and, as the name suggests, they are particularly well-suited for the Minimal Model Program. Such varieties include toric varieties and del Pezzo surfaces.

I will report on joint work with T. Várilly and M. Velasco where we introduce a class of smooth projective surfaces having finitely generated Cox ring. This class of surfaces contains toric surfaces and (log) del Pezzo surfaces.

Tue, 01 Dec 2009

15:00 - 16:00
Imperial College

(HoRSe seminar at Imperial College) Moduli of Calabi-Yau 3-folds and instantons on $G_2$ manifolds

Simon Donaldson
(Imperial College London)
Abstract

This talk will be largely speculative. First we consider the formal properties that could be expected of a "topological field theory" in 6+1 dimensions defined by $G_2$ instantons. We explain that this could lead to holomorphic bundles over moduli spaces of Calabi-Yau 3-folds whose ranks are the DT-invariants. We also discuss in more detail the compactness problem for $G_2$ instantons and associative submanifolds.

The talk will be held in Room 408, Imperial College Maths Department, Huxley Building, 180 Queen’s Gate, London.

Tue, 01 Dec 2009

13:30 - 14:30
Imperial College

(HoRSe seminar at Imperial college) Gauge theory and exceptional holonomy

Simon Donaldson
(Imperial College London)
Abstract

This talk will review material, well-known to specialists, on calibrated geometry and Yang-Mills theory over manifolds with holonomy $SU(3)$, $G_2$ or $Spin(7)$. We will also describe extensions of the standard set-up, modelled on Gromov's "taming forms" for almost-complex structures.

The talk will be held in Room 408, Imperial College Maths Department, Huxley Building, 180 Queen’s Gate, London.

Tue, 24 Nov 2009

15:45 - 16:45
L3

Constant scalar curvature orbifold metrics and stability of orbifolds through embeddings in weighted projective spaces

Julius Ross
(Cambridge)
Abstract

There is a conjectural relationship due to Yau-Tian-Donaldson between stability of projective manifolds and the existence of canonical Kahler metrics (e.g. Kahler-Einstein metrics). Embedding the projective manifold in a large projective space gives, on one hand, a Geometric Invariant Theory stability problem (by changing coordinates on the projective space) and, on the other, a notion of balanced metric which can be used to approximate the canonical Kahler metric in question. I shall discuss joint work with Richard Thomas that extends this framework to orbifolds with cyclic quotient singularities using embeddings in weighted projective space, and examples that show how several obstructions to constant scalar curvature orbifold metrics can be interpreted in terms of stability.

Tue, 10 Nov 2009

15:45 - 16:45
L3

Opers, Quot-schemes and Frobenius-destabilised vector bundles over curves

Christian Pauly
(Montpellier)
Abstract

In this talk I will introduce and study opers over a smooth projective curve X defined over a field of positive characteristic. I will describe a bijective correspondence between the set of stable vector bundles E over X such that the pull-back F^*(E) under the Frobenius

map F of X has maximal Harder-Narasimhan polygon and the set of opers having zero p-curvature. These sets turn out to be finite, which allows us to derive dimensions of certain Quot-schemes and certain loci of stable Frobenius-destabilized vector bundles over X.

Thu, 15 Oct 2009

15:45 - 16:45
SR2

(COW seminar) Moduli of irreducible symplectic manifolds

Gregory Sankaran
(Bath)
Abstract

I shall describe joint work with Gritsenko and Hulek in which we study the moduli spaces of polarised holomorphic symplectic manifolds via their periods. There are strong similarities with moduli spaces of K3 surfaces, but also some important differences, notably that global Torelli fails. I shall explain (conjecturally) why and show how the techniques used to obtain general type results for K3 moduli can be modified to give similar, and quite strong, results in this case. Mainly I shall concentrate on the case of deformations of Hilbert schemes of K3 surfaces.

Thu, 15 Oct 2009

14:00 - 15:00
DH 3rd floor SR

(COW seminar) Reid's recipe and derived categories

Timothy Logvinenko
(Liverpool)
Abstract

We give a three dimensional generalization of the classical McKay correspondence construction by Gonzales-Sprinberg and Verdier. This boils down to computing for the Bridgeland-King-Reid derived category equivalence the images of twists of the point sheaf at the origin of C^3 by irreducible representations of G. For abelian G the answer turns out to be closely linked to a piece of toric combinatorics known as Reid's recipe.

Tue, 13 Oct 2009

15:45 - 16:45
L3

A Tour of Normal Functions and Algebraic Cycles

Matt Kerr
(Durham)
Abstract

Associated to a pencil of algebraic curves with singular fibres is a bundle of Jacobians (which are abelian varieties off the discriminant locus of the family and semiabelian varieties over it). Normal functions, which are holomorphic sections of such a Jacobian bundle, were introduced by Poincare and used by Lefschetz to prove the Hodge Conjecture (HC) on algebraic surfaces. By a recent result of Griffiths and Green, an appropriate generalization of these normal functions remains at the center of efforts to establish the HC more generally and understand its implications. (Furthermore, the nature of the zero-loci of these normal functions is related to the Bloch-Beilinson conjectures on filtrations on Chow groups.)

Abel-Jacobi maps give the connection between algebraic cycles and normal functions. In this talk, we shall discuss the limits and singularities of Abel-Jacobi maps for cycles on degenerating families of algebraic varieties. These two features are strongly connected with the issue of graphing admissible normal functions in a Neron model, properly generalizing Poincare's notion of normal functions. Some of these issues will be passed over rather lightly; our main intention is to give some simple examples of limits of AJ maps and stress their connection with higher algebraic K-theory.

A very new theme in homological mirror symmetry concerns what the mirror of a normal function should be; in work of Morrison and Walcher, the mirror is related to counting holomorphic disks in a CY 3-fold bounding on a Lagrangian. Along slightly different lines, we shall briefly describe a surprising application of "higher" normal functions to growth of enumerative (Gromov-Witten) invariants in the context of local mirror symmetry.

Tue, 22 Sep 2009

12:00 - 13:00
L3

(HoRSe seminar) Tilting and cluster transfromations

Tom Bridgeland
(University of Sheffield)
Abstract

I'll explain (following Kontsevich and Soibelman) how cluster transformations intertwine non-commutative DT invariants for CY3 algebras related by a tilt.

Tue, 30 Jun 2009

14:00 - 15:00
L1

BPS wall-crossing, field theory and hyperkahler geometry

Andrew Neitzke
(Harcard)
Abstract

I will describe some recent joint work with Davide Gaiotto and Greg Moore, in which we explain the origin of the wall-crossing formula of Kontsevich and Soibelman, in the context of N=2 supersymmetric field theories in four dimensions. The wall-crossing formula gives a recipe for constructing the smooth hyperkahler metric on the moduli space of the field theory reduced on a circle to 3 dimensions. In certain examples this moduli space is actually a moduli space of ramified Higgs bundles, so we obtain a new description of the hyperkahler structure on that space.

Tue, 23 Jun 2009

15:45 - 16:45
L3

Homological Mirror Symmetry for the 4-torus

Ivan Smith
(Cambridge)
Abstract

I will describe joint work with Mohammed Abouzaid, in which we complete the proof of homological mirror symmetry for the standard four-torus and consider various applications. A key tool is the recently-developed holomorphic quilt theory of Mau-Wehrheim-Woodward.