Forthcoming events in this series


Tue, 11 Jun 2013

15:45 - 16:45
L1

Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks II

Chris Brav
(Oxford)
Abstract

We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen, Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.

Tue, 11 Jun 2013

14:00 - 15:00
SR1

Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks I

Chris Brav
(Oxford)
Abstract

We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in

the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen,

Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.

Tue, 28 May 2013

15:45 - 16:45
L3

Hamiltonian reduction and t-structures in (quantum) symplectic geometry

Tom Nevins
(Illinois)
Abstract

Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.

Tue, 07 May 2013

15:45 - 16:45
L3

Descent for n-Bundles

Jesse Wolfson
(Northwestern)
Abstract

Given a Lie group $G$, one can construct a principal $G$-bundle on a manifold $M$ by taking a cover $U\to M$, specifying a transition cocycle on the cover, and then descending the trivialized bundle $U \times G$ along the cocycle. We demonstrate the existence of an analogous construction for local $n$-bundles for general $n$. We establish analogues for simplicial Lie groupoids of Moore's results on simplicial groups; these imply that bundles for strict Lie $n$-groupoids arise from local $n$-bundles. We conclude by constructing a simple finite dimensional model of the Lie 2-group String($n$) using cohomological data.

Thu, 02 May 2013

14:00 - 15:00
L2

Sheafy matrix factorizations and bundles of quadrics

Ed Segal
(Imperial College London)
Abstract

A Landau-Ginzburg B-model is a smooth scheme $X$, equipped with a global function $W$. From $(X,W)$ we can construct a category $D(X,W)$, which is called by various names, including ‘the category of B-branes’. In the case $W=0$ it is exactly the derived category $D(X)$, and in the case that $X$ is affine it is the category of matrix factorizations of $W$. There has been a lot of foundational work on this category in recent years, I’ll describe the most modern and flexible approach to its construction.

I’ll then interpret Nick Addington’s thesis in this language. We’ll consider the case that $W$ is a quadratic form on a vector bundle, and the corresponding global version of Knorrer periodicity. We’ll see that interesting gerbe structures arise, related to the bundle of isotropic Grassmannians.

Tue, 30 Apr 2013

15:45 - 16:45
L2

Unlinking and unknottedness of monotone Lagrangian submanifolds

Jonny Evans
(University College London)
Abstract

I will explain some recent joint work with Georgios Dimitroglou Rizell in which we use moduli spaces of holomorphic discs with boundary on a monotone Lagrangian torus in ${\mathbb C}^n$ to prove that all such tori are smoothly isotopic when $n$ is odd and at least 5

Tue, 23 Apr 2013

15:45 - 16:45
L3

Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers II

Richard Rimanyi
(University of North Carolina)
Abstract

Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.

A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.

The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.

Tue, 23 Apr 2013

14:00 - 15:00
L1

Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers I

Richard Rimanyi
(University of North Carolina)
Abstract

Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.

A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.

The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.

Thu, 21 Feb 2013

15:30 - 16:30
L2

Centers and traces of categorified affine Hecke algebras (or, some tricks with coherent complexes on the Steinberg variety)

Anatoly Preygel
(UC Berkeley)
Abstract

The bounded coherent dg-category on (suitable versions of) the Steinberg stack of a reductive group G is a categorification of the affine Hecke algebra in representation theory.  We discuss how to describe the center and universal trace of this monoidal dg-category.  Many of the techniques involved are very general, and the description makes use of the notion of "odd micro-support" of coherent complexes.  This is joint work with Ben-Zvi and Nadler.

Thu, 14 Feb 2013

14:00 - 15:00
L3

Microlocal sheaf theory and symplectic geometry III

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the third talk we will see that $\Lambda$ admits a canonical quantization if it is a "conification" of a compact exact Lagrangian submanifold of a

cotangent bundle. We will see how to use this quantization to recover results of Fukaya-Seidel-Smith and Abouzaid on the topology of $\Lambda$.

Wed, 13 Feb 2013

14:00 - 15:00
L1

Microlocal sheaf theory and symplectic geometry II

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the second talk we will introduce a stack on $\Lambda$ by localization of the category of sheaves on $M$. We deduce topological obstructions on $\Lambda$ for the existence of a quantization.

Tue, 12 Feb 2013

15:45 - 16:45
L3

Microlocal sheaf theory and symplectic geometry I

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the first talk we will see that the graph of a Hamiltonian isotopy admits a canonical quantization and we deduce a new proof of Arnold's non-displaceability conjecture.

Tue, 05 Feb 2013

15:45 - 16:45
L3

The space of positive Lagrangian submanifolds

Jake Solomon
(Jerusalem)
Abstract

A Lagrangian submanifold of a Calabi-Yau manifold is called positive if the real part of the holomorphic volume form restricted to it is positive. A Hamiltonian isotopy class of positive Lagrangian submanifolds admits a Riemannian metric with non-positive curvature. Its universal cover

admits a functional, with critical points special Lagrangians, that is strictly convex with respect to the metric. If time permits, I'll explain

how mirror symmetry relates the metric and functional to the infinite dimensional symplectic reduction picture of Atiyah, Bott, and Donaldson in

the context of the Kobayashi-Hitchin correspondence.