Forthcoming events in this series
[Geometry and Algebra workshop] D-critical loci; categorification of Donaldson-Thomas theory using perverse sheaves; future projects
[Geometry and Algebra workshop] A Darboux theorem for shifted symplectic derived schemes, and applications to motivic Milnor fibres
[Geometry and Algebra workshop] Analytic geometry as relative algebraic geometry II
[Geometry and Algebra workshop] Analytic geometry as relative algebraic geometry I
[Geometry and Algebra workshop] A factorization structure on the Hilbert scheme of points on a surface
Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks II
Abstract
We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen, Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.
Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks I
Abstract
We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in
the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen,
Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.
Hamiltonian reduction and t-structures in (quantum) symplectic geometry
Abstract
Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.
Descent for n-Bundles
Abstract
Given a Lie group $G$, one can construct a principal $G$-bundle on a manifold $M$ by taking a cover $U\to M$, specifying a transition cocycle on the cover, and then descending the trivialized bundle $U \times G$ along the cocycle. We demonstrate the existence of an analogous construction for local $n$-bundles for general $n$. We establish analogues for simplicial Lie groupoids of Moore's results on simplicial groups; these imply that bundles for strict Lie $n$-groupoids arise from local $n$-bundles. We conclude by constructing a simple finite dimensional model of the Lie 2-group String($n$) using cohomological data.
Sheafy matrix factorizations and bundles of quadrics
Abstract
A Landau-Ginzburg B-model is a smooth scheme $X$, equipped with a global function $W$. From $(X,W)$ we can construct a category $D(X,W)$, which is called by various names, including ‘the category of B-branes’. In the case $W=0$ it is exactly the derived category $D(X)$, and in the case that $X$ is affine it is the category of matrix factorizations of $W$. There has been a lot of foundational work on this category in recent years, I’ll describe the most modern and flexible approach to its construction.
I’ll then interpret Nick Addington’s thesis in this language. We’ll consider the case that $W$ is a quadratic form on a vector bundle, and the corresponding global version of Knorrer periodicity. We’ll see that interesting gerbe structures arise, related to the bundle of isotropic Grassmannians.
Unlinking and unknottedness of monotone Lagrangian submanifolds
Abstract
I will explain some recent joint work with Georgios Dimitroglou Rizell in which we use moduli spaces of holomorphic discs with boundary on a monotone Lagrangian torus in ${\mathbb C}^n$ to prove that all such tori are smoothly isotopic when $n$ is odd and at least 5
Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers II
Abstract
Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.
A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.
The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.
Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers I
Abstract
Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.
A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.
The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.
Centers and traces of categorified affine Hecke algebras (or, some tricks with coherent complexes on the Steinberg variety)
Abstract
The bounded coherent dg-category on (suitable versions of) the Steinberg stack of a reductive group G is a categorification of the affine Hecke algebra in representation theory. We discuss how to describe the center and universal trace of this monoidal dg-category. Many of the techniques involved are very general, and the description makes use of the notion of "odd micro-support" of coherent complexes. This is joint work with Ben-Zvi and Nadler.