Forthcoming events in this series


Tue, 12 Feb 2008
14:45
L3

Uniqueness property for smooth affine spherical varieties

Ivan Losev
(Belarusian State University and University of Manchester)
Abstract

Let G be a connected reductive algebraic group over an

algebraically closed field of characteristic 0. A normal

irreducible G-variety X is called spherical if a Borel

subgroup of G has an open orbit on X. It was conjectured by F.

Knop that two smooth affine spherical G-varieties are

equivariantly isomorphic provided their algebras of regular

functions are isomorphic as G-modules. Knop proved that this

conjecture implies a uniqueness property for multiplicity free

Hamiltonian actions of compact groups on compact real manifolds

(the Delzant conjecture). In the talk I am going to outline my

recent proof of Knop's conjecture (arXiv:math/AG.0612561).

Tue, 29 Jan 2008

14:45 - 15:45
L3

Kuranishi bordism and Kuranishi homology, Part II.

Dominic Joyce
(Oxford)
Abstract

This is the second of two talks, and probably will not be comprehensible unless you came to last week's talk.

A Kuranishi space is a topological space equipped with a Kuranishi structure, defined by Fukaya and Ono. Kuranishi structures occur naturally on many moduli spaces in differential geometry, and in particular, in moduli spaces of stable J-holomorphic curves in symplectic geometry.

Let Y be an orbifold, and R a commutative ring. We define four topological invariants of Y: two kinds of Kuranishi bordism ring KB(Y;R), and two kinds of Kuranishi homology ring KH(Y;R). Roughly speaking, they are spanned over R by isomorphism classes [X,f] with various choices of relations, where X is a compact oriented Kuranishi space, which is without boundary for bordism and with boundary and corners for homology, and f:XY is a strong submersion. These theories are powerful tools in symplectic geometry.

Today we discuss the definition of Kuranishi homology, and the proof that weak Kuranishi homology is isomorphic to the singular homology.

Tue, 22 Jan 2008

14:45 - 15:45
L3

Kuranishi bordism and Kuranishi homology, Part I.

Dominic Joyce
(Oxford)
Abstract

A Kuranishi space is a topological space equipped with a Kuranishi structure, defined by Fukaya and Ono. Kuranishi structures occur naturally on many moduli spaces in differential geometry, and in particular, in moduli spaces of stable J-holomorphic curves in symplectic geometry.

Let Y be an orbifold, and R a commutative ring. We shall define four topological invariants of Y: two kinds of Kuranishi bordism ring KB(Y;R), and two kinds of Kuranishi homology ring KH(Y;R). Roughly speaking, they are spanned over R by isomorphism classes [X,f] with various choices of relations, where X is a compact oriented Kuranishi space, which is without boundary for bordism and with boundary and corners for homology, and f:XY is a strong submersion. Our main result is that weak Kuranishi homology is isomorphic to the singular homology of Y.

These theories are powerful tools in symplectic geometry for several reasons. Firstly, using them eliminates the issues of virtual cycles and perturbation of moduli spaces, yielding technical simplifications. Secondly, as KB,KH(Y;R) are very large, invariants defined in these groups contain more information than invariants in conventional homology. Thirdly, we can define Gromov-Witten type invariants in Kuranishi bordism or homology groups over Z, not just Q, so they can be used to study the integrality properties of Gromov-Witten invariants.

This is the first of two talks. Today we deal with motivation from symplectic geometry, and Kuranishi bordism. Next week's talk discusses Kuranishi homology.

Mon, 03 Dec 2007

13:15 - 14:15
L3

Floer cohomology of Lagrangian spheres in symplectic manifolds

Jean-Yves Welschinger
(Lyons)
Abstract

I will associate, to every pair of smooth transversal

Lagrangian spheres in a symplectic manifold having vanishing first Chern

class, its Floer cohomology groups. Hamiltonian isotopic spheres give

rise to isomorphic groups. In order to define these Floer cohomology

groups, I will make a key use of symplectic field theory.

Tue, 27 Nov 2007
13:00
L1

Elliptic curves, Cherednik Hecke algebras and Macdonald polynomials I

Olivier Schiffmann
(ENS)
Abstract

We provide a realization of Cherednik's double affine Hecke

algebras (for GL_n) as a convolution algebra of functions on moduli spaces

of coherent sheaves on an elliptic curve. As an application we give a

geometric construction of Macdonald polynomials as (traces of) certain

natural perverse sheaves on these moduli spaces. We will discuss the

possible extensions to higher (or lower !) genus curves and the relation

to the Hitchin nilpotent variety. This is (partly) based on joint work

with I. Burban and E. Vasserot.

Tue, 16 Oct 2007
15:45
L3

Obstructions to the desingularization of Special Lagrangian submanifolds

Tommaso Pacini
(Oxford)
Abstract
The theory of Special Lagrangian (SL) submanifolds is the natural point of intersection between various classical (Lagrangian and volume-minimizing submanifolds) and contemporary (Mirror Symmetry and invariants of Calabi-Yau manifolds) topics. The key problem is how to characterize the compactified moduli space of SLs. Equivalently, to understand which SL singularities admits desingularizations. Our aim is to present some explicit examples, topological results and simple observations which shed some light on the nature and complexity of this problem, and which we expect will be a useful foundation for future progress in the field. This is joint work with M. Haskins (Imperial College), cfr. arXiv:math/0609352.