Forthcoming events in this series


Tue, 29 Oct 2019

15:30 - 16:30
L4

Isotropic motives

Alexander Vishik
(Nottingham)
Abstract

The idea of isotropic localization is to substitute an algebro-geometric object (motive)
by its “local” versions, parametrized by finitely generated extensions of the ground field k. In the case of the so-called “flexible” ground field, the complexity of the respective “isotropic motivic categories” is similar to that of their topological counterpart. At the same time, new features appear: the isotropic motivic cohomology of a point encode Milnor’s cohomological operations, while isotropic Chow motives (hypothetically) coincide with Chow motives modulo numerical equivalence (with finite coefficients). Extended versions of the isotropic category permit to access numerical Chow motives with rational coefficients providing a new approach to the old questions related to them. The same localization can be applied to the stable homotopic category of Morel- Voevodsky producing “isotropic” versions of the topological world. The respective isotropic stable homotopy groups of spheres exhibit interesting features.

Tue, 22 Oct 2019

15:30 - 16:30
L4

Stability conditions and spectral networks

Fabian Haiden
(Oxford)
Abstract

Stability conditions on triangulated categories were introduced by Bridgeland, based on ideas from string theory. Conjecturally, they control existence of solutions to the deformed Hermitian Yang-Mills equation and the special Lagrangian equation (on the A-side and B-side of mirror symmetry, respectively). I will focus on the symplectic side and sketch a program which replaces special Lagrangians by "spectral networks", certain graphs enhanced with algebraic data. Based on joint work in progress with Katzarkov, Konstevich, Pandit, and Simpson.

Tue, 15 Oct 2019

15:30 - 16:30
L4

D-modules in logarithmic geometry

Clemens Koppensteiner
(Oxford)
Abstract

Given a smooth variety X with a normal crossings divisor D (or more generally a smooth log variety) we consider the ring of logarithmic differential operators: the subring of differential operators on X generated by vector fields tangent to D. Modules over this ring are called logarithmic D-modules and generalize the classical theory of regular meromorphic connections. They arise naturally when considering compactifications.

We will discuss which parts of the theory of D-modules generalize to the logarithmic setting and how to overcome new challenges arising from the logarithmic structure. In particular, we will define holonomicity for log D-modules and state a conjectural extension of the famous Riemann-Hilbert correspondence. This talk will be very example-focused and will not require any previous knowledge of D-modules or logarithmic geometry. This is joint work with Mattia Talpo.
 

Tue, 25 Jun 2019

15:30 - 16:30
L4

Global analytic geometry and Hodge theory

Kobi Kremnizer
(Oxford)
Abstract

In this talk I will describe how to make sense of the function $(1+t)^x$ over the integers. I will explain how different rings of analytic functions can be defined over the integers, and how this leads to global analytic geometry and global Hodge theory. If time permits I will also describe an analytic version of lambda-rings and how this can be used to define a cohomology theory for schemes over Z. This is joint work with Federico Bambozzi and Adam Topaz. 

Tue, 18 Jun 2019

15:30 - 16:30
L3

Noncommutative geometry from generalized Kahler structures

Marco Gualtieri
(University of Toronto)
Abstract

After reviewing our recent description of generalized Kahler structures in terms of holomorphic symplectic Morita equivalence, I will describe how this can be used for explicit constructions of toric generalized Kahler metrics.  Then I will describe how these ideas, combined with concepts from geometric quantization, provide a new approach to noncommutative algebraic geometry.

Tue, 11 Jun 2019

15:30 - 16:30
L4

Birational geometry of symplectic quotient singularities

Alastair Craw
(University of Bath)
Abstract

For a finite subgroup $G$ of $SL(2,C)$ and for $n \geq 1$,  the Hilbert scheme $X=Hilb^{[n]}(S)$ of $n$ points on the minimal resolution $S$ of the Kleinian singularity $C^2/G$ provides a crepant resolution of the symplectic quotient $C^{2n}/G_n$, where $G_n$ is the wreath product of $G$ with $S_n$. I'll explain why every projective, crepant resolution of $C^{2n}/G_n$ is a quiver variety, and why the movable cone of $X$ can be described in terms of an extended Catalan hyperplane arrangement of the root system associated to $G$ by John McKay. These results extend the algebro-geometric aspects of Kronheimer's hyperkahler description of $S$ to higher dimensions. This is joint work with Gwyn Bellamy.

Tue, 28 May 2019

15:30 - 16:30
L4

Moduli of hypersurfaces in weighted projective space

Dominic Bunnett
(FU Berlin)
Abstract

The moduli space of smooth hypersurfaces in projective space was constructed by Mumford in the 60’s using his newly developed classical (a.k.a. reductive) Geometric Invariant Theory.  I wish to generalise this construction to hypersurfaces in weighted projective space (or more generally orbifold toric varieties). The automorphism group of a toric variety is in general non-reductive and I will use new results in non-reductive GIT, developed by F. Kirwan et al., to construct a moduli space of quasismooth hypersurfaces in certain weighted projective spaces. I will give geometric characterisations of notions of stability arising from non-reductive GIT.

Tue, 21 May 2019

15:30 - 16:30
L4

Equivariant Hilbert scheme of points on K3 surfaces and modular forms

Adam Gyenge
(Oxford)
Abstract

Let $X$ be a K3 surface and let $Z_X(q)$ be the generating series of the topological Euler characteristics of the Hilbert scheme of points on $X$. It is known that $q/Z_X(q)$ equals the discriminant form $\Delta(\tau)$ after the change of variables $q=e^{2 \pi i \tau}$. In this talk we consider the equivariant generalization of this result, when a finite group $G$ acts on $X$ symplectically. Mukai and Xiao has shown that there are exactly 81 possibilities for such an action in terms of types of the fixed points. The analogue of $q/Z_X(q)$ in each of the 81 cases turns out to be a cusp form (after the same change of variables). Knowledge of modular forms is not assumed in the talk; I will introduce all necessary concepts. Joint work with Jim Bryan.

Tue, 14 May 2019
15:30
L4

Categorification of the cluster algebra structure of the quantum unipotent coordinate ring via quiver Hecke algebras

Masaki Kashiwara
(Kyoto)
Abstract

The quantum unipotent coordinate ring has a cluster algebra structure. On the other hand, this ring is isomorphic to the Grothendieck ring of the module category of quiver Hecke algebras (QHA). We can prove that cluster monomials of the quantum unipotent coordinate ring correspondi to real simple modules. This is a joint work with Seok-Jin Kang, Myungho Kim and Se-jin Oh.

Tue, 07 May 2019

15:30 - 16:30
L4

Toric degenerations of Grassmannians

Fatemeh Mohammadi
(Bristol)
Abstract

Many toric degenerations and integrable systems of the Grassmannians Gr(2, n) are described by trees, or equivalently subdivisions of polygons. These degenerations can also be seen to arise from the cones of the tropicalisation of the Grassmannian. In this talk, I focus on particular combinatorial types of cones in tropical Grassmannians Gr(k,n) and prove a necessary condition for such an initial degeneration to be toric. I will present several combinatorial conjectures and computational challenges around this problem.  This is based on joint works with Kristin Shaw and with Oliver Clarke.

Tue, 05 Mar 2019
15:30
L4

How many real Artin-Tate motives are there?

Martin Gallauer
(Oxford)
Further Information

The goals of my talk are 1) to place this question within the framework of tensor-triangular geometry, and 2) to report on joint work with Paul Balmer (UCLA) which provides an answer in this framework.

Tue, 26 Feb 2019

15:30 - 16:30
L4

Field and Vertex algebras from geometry and topology

Sven Meinhardt
(Sheffield)
Abstract

I will explain the notion of a singular ring and sketch how singular rings provide field and vertex algebras introduced by Borcherds and Kac. All of these notions make sense in general symmetric monoidal categories and behave nicely with respect to symmetric lax monoidal functors. I will provide a complete classification of singular rings if the tensor product is a cartesian product. This applies in particular to categories of topological spaces or (algebraic) stacks equipped with the usual cartesian product. Moduli spaces provide a rich source of examples of singular rings. By combining these ideas, we obtain vertex and field algebras for each reasonable moduli space and each choice of an orientable homology theory. This generalizes a recent construction of vertex algebras by Dominic Joyce.

Tue, 05 Feb 2019

15:30 - 16:30
L4

Generalized Polar Geometry

Sandra di Rocco
(KTH)
Abstract

Polar classes are very classical objects in Algebraic Geometry. A brief introduction to the subject will be presented and ideas and preliminarily results towards generalisations will be explained. These ideas can be applied towards variety sampling and relevant applications. 
 

Tue, 22 Jan 2019

15:30 - 16:30
L4

The tautological ring of Shimura varieties

Paul Ziegler
(Oxford)
Abstract

Not much is known about the Chow rings  of moduli spaces of abelian varieties or more general Shimura varieties. The tautological ring of a Shimura variety of Hodge type is a subring of its Chow ring containing many "interesting" classes. I will talk about joint work with Torsten Wedhorn on this ring as well as its characteristic p variant. The later is strongly related to the question of understanding the cycle classes of Ekedahl-Oort strata in the Chow ring.

Tue, 20 Nov 2018

15:45 - 16:45
L4

A Steenrod-square-type operation for quantum cohomology and Floer theory

Nicholas Wilkins
(Oxford)
Abstract

The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.
 

Tue, 13 Nov 2018

15:45 - 16:45
L4

On Cayley and Langlands type correspondences for Higgs bundles

Laura Schaposnik
(UIC)
Abstract

The Hitchin fibration is a natural tool through which one can understand the moduli space of Higgs bundles and its interesting subspaces (branes). After reviewing the type of questions and methods considered in the area, we shall dedicate this talk to the study of certain branes which lie completely inside the singular fibres of the Hitchin fibrations. Through Cayley and Langlands type correspondences, we shall provide a geometric description of these objects, and consider the implications of our methods in the context of representation theory, Langlands duality, and within a more generic study of symmetries on moduli spaces.

Tue, 06 Nov 2018

15:45 - 16:45
L4

Cracked Polytopes and Fano Manifolds

Thomas Prince
(Oxford)
Abstract

Combining work of Galkin, Christopherson-Ilten, and Coates-Corti-Galkin-Golyshev-Kasprzyk we see that all smooth Fano threefolds admit a toric degeneration. We can use this fact to uniformly construct all Fano threefolds: given a choice of a fan we classify reflexive polytopes which break into unimodular pieces along this fan. We can then construct closed torus invariant embeddings of the corresponding toric variety using a technique - Laurent inversion - developed with Coates and Kaspzryk. The corresponding binomial ideal is controlled by the chosen fan, and in low enough codimension we can explicitly test deformations of this toric ideal. We relate the constructions we obtain to known constructions. We study the simplest case of the above construction, closely related to work of Abouzaid-Auroux-Katzarkov, in arbitrary dimension and use it to produce a tropical interpretation of the mirror superpotential via broken lines. We expect the computation to be the tropical analogue of a Floer theory calculation.

Tue, 30 Oct 2018

15:45 - 16:45
L4

Bogomolov type inequality for Fano varieties with Picard number 1

Chunyi Li
(University of Warwick)
Abstract

I will talk about some basic facts about slope stable sheaves and the Bogomolov inequality.  New techniques from stability conditions will imply new stronger bounds on Chern characters of stable sheaves on some special varieties, including  Fano varieties, quintic threefolds and etc. I will discuss the progress in this direction and some related open problems.

Mon, 06 Aug 2018
16:15
L5

COW seminar: Moduli Spaces of Unstable Objects via Non-Reductive GIT

Joshua Jackson
(Oxford University)
Abstract

Geometric Invariant Theory is a central tool in the construction of moduli spaces, and shares the property ubiquitous among such tools that certain so-called 'unstable' objects must be excluded if the moduli space is to be well behaved. However, instability in GIT is a structured phenomenon: after making a choice of a certain invariant inner product, one has the HKKN stratification of the parameter space which, morally, sorts the objects according to how unstable they are. I will explain how one can use recent results of Berczi-Doran-Hawes-Kirwan in Non-Reductive GIT to perform quotients of these unstable strata as well, extending the classifications given by classical moduli spaces. This can be carried out, at least in principle, for any moduli problem that can be posed using GIT, and I will discuss two examples in particular: unstable (i.e. singular) curves, and coherent sheaves of fixed Harder-Narasimhan type. The latter of these is joint work with Gergely Berczi, Victoria Hoskins and Frances Kirwan.
 

Mon, 06 Aug 2018
14:45
L5

COW seminar: Stability conditions with massless objects

Jon Woolf
(University of Liverpool)
Abstract

I will explain how the definition of Bridgeland stability condition on a triangulated category C can be generalised to allow for massless objects. This allows one to construct a partial compactification of the stability space Stab(C) in which each `boundary stratum' is related to Stab(C/N) for a thick subcategory N of C, and has a neighbourhood which fibres over (an open subset of) Stab(N). This is joint work with Nathan Broomhead, David Pauksztello, and David Ploog.
 

Mon, 06 Aug 2018
13:30
L5

COW seminar: Cosection localization and quantum singularity theory

Young-Hoon Kiem
(Seoul National University)
Abstract

Enumerative  invariants since 1995 are defined as integrals of cohomology classes over a particular homology class, called the virtual fundamental class. When there is a torus action, the virtual fundamental class is localized to the fixed points and this turned out to be the most effective technique for computation of the virtual integrals so far. About 10 years ago, Jun Li and I discovered that when there is a cosection of the obstruction sheaf, the virtual fundamental class is localized to the zero locus of the cosection. This also turned out to be quite useful for computation of Gromov-Witten invariants and more. In this talk, I will discuss a generalization of the cosection localization to real classes which provides us with a purely topological theory of Fan-Jarvis-Ruan-Witten invariants (quantum singularity theory) as well as some GLSM invariants. Based on a joint work with Jun Li at arXiv:1806.00116.