Forthcoming events in this series


Mon, 07 Dec 2020

11:00 - 12:00
Virtual

Two perspectives on the stack of principal bundles on an elliptic curve and its slices

Dougal Davis
(Edinburgh)
Abstract

Let G be a reductive group, E an elliptic curve, and Bun_G the moduli stack of principal G-bundles on E. In this talk, I will attempt to explain why Bun_G is a very interesting object from the perspectives of both singularity theory on the one hand, and shifted symplectic geometry and representation theory on the other. In the first part of the talk, I will explain how to construct slices of Bun_G through points corresponding to unstable bundles, and how these are linked to certain singular algebraic surfaces and their deformations in the case of a "subregular" bundle. In the second (probably much shorter) part, I will discuss the shifted symplectic geometry of Bun_G and its slices. If time permits, I will sketch how (conjectural) quantisations of these structures should be related to some well known algebras of an "elliptic" flavour, such as Sklyanin and Feigin-Odesskii algebras, and elliptic quantum groups.

Mon, 30 Nov 2020
14:15
Virtual

Application of a Bogomolov-Gieseker type inequality to counting invariants

Soheyla Feyzbakhsh
(Imperial)
Abstract

In this talk, I will work on a smooth projective threefold X which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the projective space P^3 or the quintic threefold. I will show certain moduli spaces of 2-dimensional torsion sheaves on X are smooth bundles over Hilbert schemes of ideal sheaves of curves and points in X. When X is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. This is joint work with Richard Thomas. 

Mon, 23 Nov 2020
14:15
Virtual

Complex Links and Algebraic Multiplicities

Vidit Nanda
(Oxford)
Abstract

Given a nested pair X and Y of complex projective varieties, there is a single positive integer e which measures the singularity type of X inside Y. This is called the Hilbert-Samuel multiplicity of Y along X, and it appears in the formulations of several standard intersection-theoretic constructions including Segre classes, Euler obstructions, and various other multiplicities. The standard method for computing e requires knowledge of the equations which define X and Y, followed by a (super-exponential) Grobner basis computation. In this talk we will connect the HS multiplicity to complex links, which are fundamental invariants of (complex analytic) Whitney stratified spaces. Thanks to this connection, the enormous computational burden of extracting e from polynomial equations reduces to a simple exercise in clustering point clouds. In fact, one doesn't even need the polynomials which define X and Y: it suffices to work with dense point samples. This is joint work with Martin Helmer.

Mon, 16 Nov 2020
14:15
Virtual

Optimal transport, Ricci curvature lower bounds and group actions

Andrea Mondino
(Oxford)
Abstract

In the talk I will survey the fast growing field of metric measure spaces satisfying a lower bound on Ricci Curvature, in a synthetic sense via optimal transport. Particular emphasis will be given to discuss how such (possibly non-smooth) spaces naturally (and usefully) extend the class of smooth Riemannian manifolds with Ricci curvature bounded below.

Mon, 09 Nov 2020

14:15 - 15:15
Virtual

Cohomology of the moduli of Higgs bundles and the Hausel-Thaddeus conjecture

Davesh Maulik
(MIT)
Abstract

In this talk, I will discuss some results on the structure of the cohomology of the moduli space of stable SL_n Higgs bundles on a curve. 

One consequence is a new proof of the Hausel-Thaddeus conjecture proven previously by Groechenig-Wyss-Ziegler via p-adic integration.

We will also discuss connections to the P=W conjecture if time permits. Based on joint work with Junliang Shen.

Mon, 02 Nov 2020

14:15 - 15:15
Virtual

Smith theory in filtered Floer homology and Hamiltonian diffeomorphisms

Egor Shelukhin
(Université de Montréal)
Abstract

We describe how Smith theory applies in the setting of Hamiltonian Floer homology filtered by the action functional, and provide applications to questions regarding Hamiltonian diffeomorphisms, including the Hofer-Zehnder conjecture on the existence of infinitely many periodic points and a question of McDuff-Salamon on Hamiltonian diffeomorphisms of finite order.

Mon, 26 Oct 2020

14:15 - 15:15
Virtual

Coproducts in the cohomological DT theory of 3-Calabi-Yau completions

Ben Davison
(Edinburgh)
Abstract
Given a suitably friendly category D we can take the 3-Calabi Yau completion of D and obtain a 3-Calabi-Yau category E. The archetypal example has D as the category of coherent sheaves on a smooth quasiprojective surface, then E is the category of coherent sheaves on the total space of the canonical bundle - a quasiprojective 3CY variety. The moduli stack of semistable objects in the 3CY completion E supports a vanishing cycle-type sheaf, the hypercohomology of which is the basic object in the study of the DT theory of E. Something extra happens when our input category is itself 2CY: examples include the category of local systems on a Riemann surface, the category of coherent sheaves on a K3/Abelian surface, the category of Higgs bundles on a smooth complete curve, or the category of representations of a preprojective algebra. In these cases, the DT cohomology of E carries a cocommutative coproduct. I'll also explain how this interacts with older algebraic structures in cohomological DT theory to provide a geometric construction of both well-known and new quantum groups.
Mon, 19 Oct 2020

14:15 - 15:15
Virtual

Spin(7) Instantons and HYM Connections for the Stenzel Metric

Hector Papoulias
(Oxford)
Abstract

The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

Mon, 12 Oct 2020
14:15
Virtual

Segre and Verlinde formulas for moduli of sheaves on surfaces

Lothar Gottsche
(ICTP Trieste)
Abstract

This is a report on joint work with Martijn Kool. 

Recently, Marian-Oprea-Pandharipande established a generalization of Lehn’s conjecture for Segre numbers associated to Hilbert schemes of points on surfaces. Extending work of Johnson, they provided a conjectural correspondence between Segre and Verlinde numbers. For surfaces with holomorphic 2-form, we propose conjectural generalizations of their results to moduli spaces of stable sheaves of higher rank. 

Using Mochizuki’s formula, we derive a universal function which expresses virtual Segre and Verlinde numbers of surfaces with holomorphic 2-form in terms of Seiberg- Witten invariants and intersection numbers on products of Hilbert schemes of points. We use this to  verify our conjectures in examples. 

Mon, 22 Jun 2020
14:15
Virtual

Geometry of genus 4 curves in P^3 and wall-crossing

Fatemeh Rezaee
(Edinburgh)
Abstract

In this talk, I will explain a new wall-crossing phenomenon on P^3 that induces non-Q-factorial singularities and thus cannot be understood as an operation in the MMP of the moduli space, unlike the case for many surfaces.  If time permits, I will explain how the wall-crossing could help to understand the geometry of the associated Hilbert scheme and PT moduli space.

Mon, 15 Jun 2020
14:15
Virtual

Geometry from Donaldson-Thomas invariants

Tom Bridgeland
(Sheffield)
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

Mon, 08 Jun 2020
14:15
Virtual

From calibrated geometry to holomorphic invariants

Tommaso Pacini
(University of Turin)
Abstract

Calibrated geometry, more specifically Calabi-Yau geometry, occupies a modern, rather sophisticated, cross-roads between Riemannian, symplectic and complex geometry. We will show how, stripping this theory down to its fundamental holomorphic backbone and applying ideas from classical complex analysis, one can generate a family of purely holomorphic invariants on any complex manifold. We will then show how to compute them, and describe various situations in which these invariants encode, in an intrinsic fashion, properties not only of the given manifold but also of moduli spaces.

Interest in these topics, if initially lacking, will arise spontaneously during this informal presentation.

Mon, 01 Jun 2020
14:15
Virtual

Homological mirror symmetry for log Calabi-Yau surfaces

Ailsa Keating
(Cambridge)
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

Mon, 25 May 2020
14:15
Virtual

Quantum K-theory and 3d A-model

Cyril Closset
(Oxford)
Abstract

I will discuss some ongoing work on three-dimensional supersymmetric gauge theories and their relationship to (equivariant) quantum K-theory. I will emphasise the interplay between the physical and mathematical motivations and approaches, and attempt to build a dictionary between the two.  As an interesting example, I will discuss the quantum K-theory of flag manifolds. The QK ring will be related to the vacuum structure of a gauge theory with Chern-Simons interactions, and the (genus-0) K-theoretic invariants will be computed in terms of explicit residue formulas that can be derived from the relevant supersymmetric path integrals.

Mon, 18 May 2020
14:15
Virtual

Some constructions of Calabi--Yau threefolds and real Lagrangian submanifolds

Thomas Prince
(Oxford)
Abstract

I will describe the results of two projects on the construction of Calabi-Yau threefolds and certain real Lagrangian submanifolds. The first concerns the construction of a novel dataset of Calabi-Yau threefolds via an application of the Gross-Siebert algorithm to a reducible union of toric varieties obtained by degenerating anti-canonical hypersurfaces in a class of (around 1.5 million) Gorenstein toric Fano fourfolds. Many of these constructions correspond to smoothing such a hypersurface; in contrast to the famous construction of Batyrev-Borisov which exploits crepant resolutions of such hypersurfaces. A central ingredient here is the construction of a certain 'integral affine structure with singularities' on the boundary of a class of polytopes from which one can form a topological model, due to Gross, of the corresponding Calabi-Yau threefold X. In general, such topological models carry a canonical (anti-symplectic) involution i and in the second project, which is joint work with H. Argüz, we describe the fixed point locus of this involution. In particular, we prove that the map i*-1 on graded pieces of a Leray filtration of H^3(X,Z2) can be identified with the map D -> D^2, where D is an element of H^2(X',Z2) and X' is mirror-dual to X. We use this to compute the Z2 cohomology group of the fixed locus, answering a question of Castaño-Bernard--Matessi.

Mon, 11 May 2020
14:15
Virtual

Universal structures in enumerative invariant theories

Dominic Joyce
(Oxford)
Abstract

An enumerative invariant theory in Algebraic Geometry, Differential Geometry, or Representation Theory, is the study of invariants which 'count' $\tau$-(semi)stable objects $E$ with fixed topological invariants $[E]=\alpha$ in some geometric problem, by means of a virtual class $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ of the moduli spaces ${\mathcal M}_\alpha^{\rm st}(\tau)\subseteq{\mathcal M}_\alpha^{\rm ss}(\tau)$ of $\tau$-(semi)stable objects in some homology theory. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson-Thomas type invariants counting coherent sheaves on Calabi-Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds.

We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces ${\mathcal M},{\mathcal M}^{\rm pl}$, where my big vertex algebras project http://people.maths.ox.ac.uk/~joyce/hall.pdf gives $H_*({\mathcal M})$ the structure of a graded vertex algebra, and $H_*({\mathcal M}^{\rm pl})$ a graded Lie algebra, closely related to $H_*({\mathcal M})$. The virtual classes $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ take values in $H_*({\mathcal M}^{\rm pl})$. In most such theories, defining $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ when ${\mathcal M}_\alpha^{\rm st}(\tau)\ne{\mathcal M}_\alpha^{\rm ss}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ in homology over $\mathbb Q$, and that the resulting classes satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*({\mathcal M}^{\rm pl})$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles.

This is joint work with Jacob Gross and Yuuji Tanaka.

 

Mon, 04 May 2020
14:15
Virtual

Homology of moduli stacks of complexes

Jacob Gross
(Oxford)
Abstract

There are many known ways to compute the homology of the moduli space of algebraic vector bundles on a curve. For higher-dimensional varieties however, this problem is very difficult. It turns out that the moduli stack of objects in the derived category of a variety X, however, is topologically simpler than the moduli stack of vector bundles on X. We compute the rational homology of the moduli stack of complexes in the derived category of a smooth complex projective variety. For a certain class of varieties X including curves, surfaces, flag varieties, and certain 3- and 4-folds we get that the rational cohomology is freely generated by Künneth components of Chern characters of the universal complex––this allows us to identify Joyce's vertex algebra construction with a super-lattice vertex algebra on the rational cohomology of X in these cases. 

Mon, 27 Apr 2020
14:15
Virtual

Evanescent ergosurfaces and waves

Joe Keir
(Oxford)
Abstract

Certain exotic Lorentzian manifolds, including some of importance to string theory, possess an unusual geometric feature called an "evanescent ergosurface". In this talk I will introduce this feature and motivate the study of the wave equation on the associated geometries. It turns out that the presence of an evanescent ergosurface prevents the energy of waves from being uniformly bounded in terms of their initial energy; I will outline the proof of this statement. An immediate corollary is that there do not exist manifolds with both an evanescent ergosurface and a globally timelike Killing vector field.

Mon, 09 Mar 2020

14:15 - 15:15
L4

Toric geometry of exceptional holonomy manifolds

Thomas Madsen
(Buckingham)
Abstract

Exceptional holonomy manifolds come with certain geometric data that include a Ricci flat metric. Finding examples is therefore very difficult. The task can be made more tractable by imposing symmetry.  The focus of this talk is the case of torus symmetry. For a particular rank of the torus, one gets a natural parameterisation of the orbit space in terms of so-called multi-moment maps. I will discuss aspects of the local and global geometry of these 'toric' exceptional holonomy manifolds. The talk is based on joint work with Andrew Swann.

Mon, 02 Mar 2020

14:15 - 15:15
L4

Cohomogeneity one families in Spin(7)-geometry

Fabian Lehmann
(UCL)
Abstract

An 8-dimensional Riemannian manifold with holonomy group contained in Spin(7) is Ricci-flat, but not Kahler. The condition that the holonomy reduces to Spin(7) is equivalent to a complicated system of non-linear PDEs. In the non-compact setting, symmetries can be used to reduce this complexity. In the case of cohomogeneity one manifolds, i.e. where a generic orbit has codimension one, the non-linear PDE system
reduces to a nonlinear ODE system. I will discuss recent progress in the construction of 1-parameter families of complete cohomogeneity one Spin(7) holonomy metrics. All examples are asymptotically conical (AC) or asymptotically locally conical (ALC).

 

Mon, 24 Feb 2020

14:15 - 15:15
L4

Higgs bundles and higher Teichmüller components

Oscar Garcia-Prada
(CSIC Madrid)
Abstract

It is well-known that the Teichmüller space of a compact surface can be identified with a connected component of the moduli space of representations of the fundamental group of the surface in PSL(2,R). Higher Teichmüller components are generalizations of this that exist for the moduli space of representations of the fundamental group into certain real simple Lie groups of higher rank. As for the usual Teichmüller space, these components consist entirely  of discrete and faithful representations. Several cases have been identified over the years. First, the Hitchin components for split groups, then the maximal Toledo invariant components for Hermitian groups, and more recently certain components for SO(p,q). In this talk, I will describe a general construction of (still somewhat conjecturally) all possible Teichmüller components, and a parametrization of them using Higgs bundles.

Mon, 17 Feb 2020
14:15
L4

Twisted indices of 3d supersymmetric gauge theories and enumerative geometry of quasi-maps

Heeyeon Kim
(Oxford)
Abstract

I will discuss the geometric interpretation of the twisted index of 3d supersymmetric gauge theories on a closed Riemann surface. In the first part of the talk, I will show that the twisted index computes the virtual Euler characteristic of the moduli space of solutions to vortex equations on the Riemann surface, which can be understood algebraically as quasi-maps to the Higgs branch. I will explain 3d N=4 mirror symmetry in this context, which implies non-trivial relations between enumerative invariants associated to these moduli spaces. Finally, I will present a wall-crossing formula for these invariants derived from the gauge theory point of view.
 

Mon, 10 Feb 2020
14:15
L4

Morse theory on singular spaces

Graeme Wilkin
(York University)
Abstract

Morse theory has a long history with many spectacular applications in different areas of mathematics. In this talk I will explain an extension of the main theorem of Morse theory that works for a large class of functions on singular spaces. The main example to keep in mind is that of moment maps on varieties, and I will present some applications to the topology of symplectic quotients of singular spaces.
 

Mon, 03 Feb 2020

14:15 - 15:15
L4

Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds

Christoph Bohm
(Münster)
Abstract

We  show that homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, using that they admit periodic, integrally minimal foliations by homogeneous hypersurfaces. For the geometric flow induced by the orbit-Einstein condition, we construct a Lyapunov function based on curvature estimates which come from real GIT.

Mon, 27 Jan 2020

14:15 - 15:15
L4

Symplectic embeddings and infinite staircases. 

Tara Holm
(Cornell and Cambridge)
Abstract

McDuff and Schlenk determined when a four-dimensional symplectic ellipsoid can be symplectically embedded into a four-dimensional ball. They found that if the ellipsoid is close to round, the answer is given by an ``infinite staircase" determined by the odd index Fibonacci numbers, while if the ellipsoid is sufficiently stretched, all obstructions vanish except for the volume obstruction. Infinite staircases have also been found when embedding ellipsoids into polydisks (Frenkel - Muller, Usher) and into the ellipsoid E(2, 3) (Cristofaro-Gardiner - Kleinman). In this talk, we will see how the sharpness of ECH capacities for embedding of ellipsoids implies the existence of infinite staircases for these and three other target spaces.  We will then discuss the relationship with toric varieties, lattice point counting, and the Philadelphia subway system. This is joint work with Dan Cristofaro-Gardiner, Alessia Mandini,
and Ana Rita Pires.