Forthcoming events in this series


Tue, 23 Nov 2021
09:00
Virtual

Deletion and contraction for Hausel-Proudfoot spaces

Michael McBreen
(Hong Kong)
Abstract

Dolbeault hypertoric manifolds are hyperkahler integrable systems generalizing the Ooguri-Vafa space. They approximate the Hitchin fibration near a totally degenerate nodal spectral curve. On the other hand, Betti hypertoric varieties are smooth affine varieties parametrizing microlocal sheaves on the same nodal spectral curve. I will review joint work with Zsuzsanna Dansco and Vivek Shende (arXiv:1910.00979) which constructs a diffeomorphism between the Dolbeault and Betti hypertorics, and proves that it intertwines the perverse and weight filtrations on their cohomologies. I will describe our main tool : deletion-contraction sequences arising from either smoothing a node of the spectral curve or separating its branches. I will also discuss some more recent developments and open questions.

Mon, 22 Nov 2021
14:15
L4

Purely inseparable Galois theory

Lukas Brantner
((Oxford University))
Abstract

A field extension $F/K$ in characteristic $p$ is purely inseparable if for each $x$ in $F$, some power $x^{p^n}$ belongs to $K$. Using methods from homotopy theory, we construct a Galois correspondence for finite purely inseparable field extensions $F/K$, generalising a classical result of Jacobson for extensions of exponent one (where $x^p$ belongs to $K$ for all $x$ in $F$). This is joint work with Waldron.

Mon, 15 Nov 2021
14:15
L4

TBA

Huaxin (Henry) Liu
((Oxford University))
Abstract

TBA

Mon, 08 Nov 2021
14:15
L4

Deformation uniqueness of Calabi-Yau metrics with maximal volume growth

Shih-Kai Chiu
((Oxford University))
Abstract

It is expected that complete noncompact Calabi-Yau manifolds are in some sense governed by their asymptotics at infinity. In the maximal volume growth case, the asymptotics at infinity are given by Calabi-Yau cones. We are interested in deformations of such metrics that fix the asymptotic cones at infinity. In the asymptotically conical case, Conlon-Hein proved uniqueness under such deformations. Their method is based on the corresponding linearized problem, namely the study of subquadratic harmonic functions. We generalize their work to the maximal volume growth case, allowing the tangent cones at infinity to have non-isolated singularities. Part of the talk is based on work in progress joint with Gabor Szekelyhidi.

Mon, 01 Nov 2021
14:15
L4

Stability conditions for polarised varieties

Ruadhaí Dervan
(Cambridge)
Abstract

A central theme of complex geometry is the relationship between differential-geometric PDEs and algebro-geometric notions of stability. Examples include Hermitian Yang-Mills connections and Kähler-Einstein metrics on the PDE side, and slope stability and K-stability on the algebro-geometric side. I will describe a general framework associating geometric PDEs on complex manifolds to notions of stability, and will sketch a proof showing that existence of solutions is equivalent to stability in a model case. The framework can be seen as an analogue in the setting of varieties of Bridgeland's stability conditions on triangulated categories.

Mon, 25 Oct 2021
14:15
L4

The structure of mean curvature flow translators with finite total curvature

Ilyas Khan
((Oxford University))
Abstract

In the mean curvature flow, translating solutions are an important model for singularity formation. In this talk, I will describe the asymptotic structure of 2D mean curvature flow translators embedded in R^3 which have finite total curvature, which turns out to be highly rigid. I will outline the proof of this asymptotic description, in particular focusing on some novel and unexpected features of this proof.

Mon, 18 Oct 2021
14:15
L4

Higher rank DT theory from curve counting

Richard Thomas
(Imperial College)
Abstract

Fix a Calabi-Yau 3-fold X. Its DT invariants count stable bundles and sheaves on X. The generalised DT invariants of Joyce-Song count semistable bundles and sheaves on X. I will describe work with Soheyla Feyzbakhsh showing these generalised DT invariants in any rank r can be written in terms of rank 1 invariants. By the MNOP conjecture the latter are determined by the GW invariants of X.
Along the way we also show they are determined by rank 0 invariants counting sheaves supported on surfaces in X. These invariants are predicted by S-duality to be governed by (vector-valued, mock) modular forms.

Mon, 11 Oct 2021

14:15 - 15:15
L4

Minimal surfaces, spectral geometry and homogenisation

Jean Lagacé
(University of Bristol)
Abstract

Free boundary minimal surfaces are a notoriously elusive object in geometric analysis. From 2011, Fraser and Schoen's research program found a relationship between free boundary minimal surfaces in unit balls and metrics which maximise the first nontrivial Steklov eigenvalue. In this talk, I will explain how we can adapt homogenisation theory, a branch of applied mathematics, to a geometric setting in order to obtain surfaces with first Steklov eigenvalue as large as possible, and how it leads to the existence of free boundary minimal surfaces which were previously thought not to exist.

Mon, 21 Jun 2021
14:15
Virtual

Floer homotopy theory and Morava K-theory

Andrew Blumberg
(University of Texas at Austin)
Abstract

I will describe joint work with Abouzaid which constructs a stable homotopy theory refinement of Floer homology that has coefficients in the Morava K-theory spectra. The classifying spaces of finite groups satisfy Poincare duality for the Morava K-theories, which allows us to use this version of Floer homology to produce virtual fundamental chains for moduli spaces of Floer trajectories. As an application, we prove the Arnold conjecture for ordinary cohomology with coefficients in finite fields.

Mon, 07 Jun 2021
14:15
Virtual

Stability of fibrations through geodesic analysis

Michael Hallam
(Oxford)
Abstract

A celebrated result in geometry is the Kobayashi-Hitchin correspondence, which states that a holomorphic vector bundle on a compact Kähler manifold admits a Hermite-Einstein metric if and only if the bundle is slope polystable. Recently, Dervan and Sektnan have conjectured an analogue of this correspondence for fibrations whose fibres are compact Kähler manifolds admitting Kähler metrics of constant scalar curvature. Their conjecture is that such a fibration is polystable in a suitable sense, if and only if it admits an optimal symplectic connection. In this talk, I will provide an introduction to this theory, and describe my recent work on the conjecture. Namely, I show that existence of an optimal symplectic connection implies polystability with respect to a large class of fibration degenerations. The techniques used involve analysing geodesics in the space of relatively Kähler metrics of fibrewise constant scalar curvature, and convexity of the log-norm functional in this setting. This is work for my PhD thesis, supervised by Frances Kirwan and Ruadhaí Dervan.

Mon, 31 May 2021
13:00
Virtual

Calabi-Yau Metrics from Machine Learning

Sven Krippendorf
(LMU München)
Further Information

Please note that the time of this meeting has been changed to 13:00.

Abstract

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ4.

I briefly give an overview on the key ML frameworks involved in this analysis (neural networks, auto-differentiation). This talk is mainly based on 2012.04656.

Mon, 24 May 2021
14:15
Virtual

Poisson maps between character varieties: gluing and capping

Lisa Jeffrey
(University of Toronto)
Abstract

(joint with Indranil Biswas, Jacques Hurtubise, Sean Lawton, arXiv:2104.05589)

Let $G$ be either a compact Lie group or a reductive Lie group. Let $\pi$ be the fundamental group of a 2-manifold (possibly with boundary).
We can define a character variety by ${\rm Hom}(\pi, G)/G$, where $G$ acts by conjugation.

We explore the mappings between character varieties that are induced  by mappings between surfaces. It is shown that these mappings are generally Poisson.

In some cases, we explicitly calculate the Poisson bi-vector.

Mon, 17 May 2021
14:15
Virtual

A Seiberg-Witten Floer stable homotopy type

Matt Stoffregen
(Michigan State University)
Abstract

We give a brief introduction to Floer homotopy, from the Seiberg-Witten point of view.  We will then discuss Manolescu's version of finite-dimensional approximation for rational homology spheres.  We prove that a version of finite-dimensional approximation for the Seiberg-Witten equations associates equivariant spectra to a large class of three-manifolds.  In the process we will also associate, to a cobordism of three-manifolds, a map between spectra.  We give some applications to intersection forms of four-manifolds with boundary. This is joint work with Hirofumi Sasahira. 

Mon, 10 May 2021
14:15
Virtual

Hilbert schemes for fourfolds and Quot-schemes for surfaces

Arkadij Bojko
(Oxford)
Abstract

Counting coherent sheaves on Calabi--Yau fourfolds is a subject in its infancy. An evidence of this is given by how little is known about perhaps the simplest case - counting ideal sheaves of length $n$. On the other hand, the parallel story for surfaces while with many open questions has seen many new results, especially in the direction of understanding virtual integrals over Quot-schemes. Motivated by the conjectures of Cao--Kool and Nekrasov, we study virtual integrals over Hilbert schemes of points of top Chern classes $c_n(L^{[n]})$ and their K-theoretic refinements. Unlike lower-dimensional sheaf-counting theories, one also needs to pay attention to orientations. In this, we rely on the conjectural wall-crossing framework of Joyce. The same methods can be used for Quot-schemes of surfaces and we obtain a generalization of the work of Arbesfeld--Johnson--Lim--Oprea--Pandharipande for a trivial curve class. As a result, there is a correspondence between invariants for surfaces and fourfolds in terms of a universal transformation.

Mon, 03 May 2021
14:15
Virtual

Compactness Results in SO(3) Atiyah-Floer Conjecture

Guangbo Xu
(Texas A&M)
Abstract

The Atiyah-Floer conjecture asserts the instanton Floer homology of a closed three-manifold (constructed via gauge theory) is isomorphic to the Lagrangian Floer homology of a pair of Lagrangian submanifolds associated to a splitting of the three manifold (constructed via symplectic geometry). This conjecture has remained open for more than three decades. In this talk I will explain two compactness results for the SO(3) case of the conjecture in the neck-stretching process. One result is related to the construction of a natural bounding chain in the Lagrangian Floer theory and a conjecture of Fukaya.

Mon, 26 Apr 2021
14:15
Virtual

Equivariant Seidel maps and a flat connection on equivariant symplectic cohomology

Todd Liebenschutz-Jones
(Oxford)
Abstract

I'll be presenting my PhD work, in which I define two new algebraic structures on the equivariant symplectic cohomology of a convex symplectic manifold. The first is a collection of shift operators which generalise the shift operators on equivariant quantum cohomology in algebraic geometry. That is, given a Hamiltonian action of the torus T, we assign to a cocharacter of T an endomorphism of (S1 × T)-equivariant Floer cohomology based on the equivariant Floer Seidel map. The second is a connection which is a multivariate version of Seidel’s q-connection on S1 -equivariant Floer cohomology and generalises the Dubrovin connection on equivariant quantum cohomology.

Tue, 16 Mar 2021
14:15
Virtual

The Quot scheme Quotˡ(E)

Samuel Stark
(Imperial College London)
Abstract

Grothendieck's Quot schemes — moduli spaces of quotient sheaves — are fundamental objects in algebraic geometry, but we know very little about them. This talk will focus on a relatively simple special case: the Quot scheme Quotˡ(E) of length l quotients of a vector bundle E of rank r on a smooth surface S. The scheme Quotˡ(E) is a cross of the Hilbert scheme of points of S (E=O) and the projectivisation of E (l=1); it carries a virtual fundamental class, and if l and r are at least 2, then Quotˡ(E) is singular. I will explain how the ADHM description of Quotˡ(E) provides a conjectural description of the singularities, and show how they can be resolved in the l=2 case. Furthermore, I will describe the relation between Quotˡ(E) and Quotˡ of a quotient of E, prove a functoriality result for the virtual fundamental class, and use it to compute certain tautological integrals over Quotˡ(E).

Mon, 08 Mar 2021
14:15
Virtual

The spine of the T-graph of the Hilbert scheme

Diane MacLagan
(University of Warwick)
Abstract

The torus T of projective space also acts on the Hilbert
scheme of subschemes of projective space, and the T-graph of the
Hilbert scheme has vertices the fixed points of this action, and edges
the closures of one-dimensional orbits. In general this graph depends
on the underlying field. I will discuss joint work with Rob
Silversmith, in which we construct of a subgraph, which we call the
spine, of the T-graph of Hilb^N(A^2) that is independent of the choice
of field. The key technique is an understanding of the tropical ideal,
in the sense of tropical scheme theory, of the ideal of the universal
family of an edge in the spine.

Mon, 01 Mar 2021
14:15
Virtual

Homological mirror symmetry for genus two curves

Catherine Cannizzo
(Stony Brook University)
Abstract

We prove a homological mirror symmetry result for a one-parameter family of genus 2 curves (https://arxiv.org/abs/1908.04227), and then mention current joint work with H. Azam, H. Lee, and C.-C. M. Liu on generalizing this to the 6-parameter family of all genus 2 curves.

First we describe the B-model genus 2 curve in a 4-torus and the geometric construction of the generalized SYZ mirror. Then we set up the Fukaya-Seidel category on the mirror. Finally we will see the main algebraic HMS result on homogenous coordinate rings, which is at the level of cohomology. The method involves first considering mirror symmetry for the 4-torus, then restricting to the hypersurface genus 2 curve and extending to a mirror Landau-Ginzburg model with fiber the mirror 4-torus. 

Mon, 22 Feb 2021
14:15
Virtual

Spaces of metrics of positive scalar curvature on manifolds with boundary

Christian Bär
(University of Potsdam)
Abstract

Unlike for closed manifolds, the existence of positive scalar curvature (psc) metrics on connected manifolds with
nonempty boundary is unobstructed. We study and compare the spaces of psc metrics on such manifolds with various
conditions along the boundary: H ≥ 0, H = 0, H > 0, II = 0, doubling, product structure. Here H stands for the
mean curvature of the boundary and II for its second fundamental form. "Doubling" means that the doubled metric
on the doubled manifold (along the boundary) is smooth and "product structure" means that near the boundary the
metric has product form. We show that many, but not all of the obvious inclusions are weak homotopy equivalences.
In particular, we will see that if the manifold carries a psc metric with H ≥ 0, then it also carries one which is
doubling but not necessarily one which has product structure. This is joint work with Bernhard Hanke.

Mon, 15 Feb 2021
14:15
Virtual

Weightings and normal forms

Eckhard Meinrenken
(University of Toronto)
Abstract

The idea of assigning weights to local coordinate functions is used in many areas of mathematics, such as singularity theory, microlocal analysis, sub-Riemannian geometry, or the theory of hypo-elliptic operators, under various terminologies. In this talk, I will describe some differential-geometric aspects of weightings along submanifolds. This includes a coordinate-free definition, and the construction of weighted normal bundles and weighted blow-ups. As an application, I will describe a canonical local model for isotropic embeddings in symplectic manifolds. (Based on joint work with Yiannis Loizides.)

Mon, 08 Feb 2021
14:15
Virtual

Punctured invariants and gluing

Dan Abramovich
(Brown University)
Abstract
Associativity in quantum cohomology is proven using a gluing formula for Gromov-Witten invariants. The gluing formula underlying orbifold quantum cohomology has additional interesting features. The Gross-Siebert program requires an analogue of quantum cohomology in logarithmic geometry, with underlying gluing formula for punctured logarithmic invariants. I'll attempt to explain how this works and what new subtle features arise. This is based on joint work with Q. Chen, M. Gross and B. Siebert (https://arxiv.org/pdf/2009.07720.pdf).
Mon, 01 Feb 2021
14:15
Virtual

Leaf decompositions in Euclidean spaces

Krzysztof Ciosmak
(Oxford)
Abstract

In the talk I shall discuss an approach to the localisation technique, for spaces satisfying the curvature-dimension condition, by means of L1-optimal transport. Moreover, I shall present recent work on a generalisation of the technique to multiple constraints setting. Applications of the theory lie in functional and geometric inequalities, e.g. in the Lévy-Gromov isoperimetric inequality.

Mon, 25 Jan 2021
14:15
Virtual

Equivariant Lagrangian Floer homology and Extended Field theory

Guillem Cazassus
(Oxford)
Abstract
Given a compact Lie group G and a Hamiltonian G-manifold endowed with a pair of G-Lagrangians, we provide a construction for their equivariant Floer homology. Such groups have been defined previously by Hendricks, Lipshitz and Sarkar, and also by Daemi and Fukaya. A similar construction appeared independently in the work of Kim, Lau and Zheng. We will discuss an attempt to use such groups to construct topological field theories: these should be seen as 3-morphism spaces in the Hamiltonian 3-category, which should serve as a target for a field theory corresponding to Donaldson polynomials.
Mon, 18 Jan 2021
14:15
Virtual

Representation theory in geometric complexity theory

Christian Ikenmeyer
(University of Liverpool)
Abstract

Geometric complexity theory is an approach towards solving computational complexity lower bounds questions using algebraic geometry and representation theory. This talk contains an introduction to geometric complexity theory and a presentation of some recent results. Along the way connections to the study of secant varieties and to classical combinatorial and representation theoretic conjectures will be pointed out.