Forthcoming events in this series


Thu, 03 Jun 2021

12:00 - 13:00
Virtual

Surfactants in drop-on-demand inkjet printing (Antonopoulou). An optic ray theory for nerve durotaxis (Oliveri).

Eva Antonopoulou & Hadrien Olivieri
(Mathematical Institute (University of Oxford))
Abstract

Eva Antonopoulou

Surfactants in drop-on-demand inkjet printing

The rapid development of new applications for inkjet printing and increasing complexity of the inks has created a demand for in silico optimisation of the ink jetting performance. Surfactants are often added to aqueous inks to modify the surface tension. However, the time-scales for drop formation in inkjet printing are short compared to the time-scales of the surfactant diffusion resulting a non-uniform surfactant distribution along the interface leading to surface tension gradients. We present both experiments and numerical simulations of inkjet break-up and drop formation in the presence of surfactants investigating both the surfactant transport on the interface and the influence of Marangoni forces on break-up dynamics. The numerical simulations were conducted using a modified version of the Lagrangian finite element developed by our previous work by including the solution for the transport equation for the surfactants over the free surface. During the initial phase of a “pull-push-pull” drive waveform, surfactants are concentrated at the front of the main drop with the trailing ligament being almost surfactant free. The resulting Marangoni stresses act to delay and can even prevent the break-off of the main drop from the ligament. We also examine and present some initial results on the effects of surfactants on the shape oscillations  of the main drop. Although there is little change to the oscillation frequency, the presence of surfactants significantly increases the rate of decay due to the rigidification of the surface, by modifying the internal flow within the droplet and enhancing the viscous dissipation.

Hadrien Oliveri

An optic ray theory for nerve durotaxis

During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell’s law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.

Thu, 27 May 2021

12:00 - 13:00
Virtual

Elastocapillary singularities in wetting & creasing

Jacco Snoeijer
(University of Twente)
Abstract

Soft elastic interfaces can strongly deform under the influence of external forces, and can even exhibit elastic singularities. Here we discuss two cases where such singularities occur. First, we describe surface creases that form under compression (or swelling) of an elastic medium. Second, we consider the elastocapillary ridges that form when a soft substrate is wetted by a liquid drop. Analytical descriptions are presented and compared to experiments. We reveal that, like for liquid interfaces, the surface tension of the solid is a key factor in shaping the surface, and determines the nature of the singularity.

Thu, 20 May 2021

12:00 - 13:00
Virtual

Next generation mesoscopic models for neural activity

Áine Byrne
(University College Dublin)
Abstract

The Wilson–Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. In this talk, I will introduce a new neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related synchronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson–Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson–Cowan style model I will show how it can be deployed in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.

Thu, 13 May 2021

12:00 - 13:00
Virtual

Optimal electrostatic control of fluid films

Alex Wray
(Strathclyde)
Abstract

Controlling film flows has long been a central target for fluid dynamicists due to its numerous applications, in fields from heat exchangers to biochemical recovery, to semiconductor manufacture. However, despite its significance in the literature, most analyses have focussed on the “forward” problem: what effect a given control has on the flow. Often these problems are already complex, incorporating the - generally multiphysical - interplay of hydrodynamic phenomena with the mechanism of control. Indeed, many systems still defy meaningful agreement between models and experiments.
 
The inverse problem - determining a suitable control scheme for producing a specified flow - is considerably harder, and much more computationally expensive (often involving thousands of calculations of the forward problem). Performing such calculations for the full Navier-Stokes problem is generally prohibitive.

We examine the use of electric fields as a control mechanism. Solving the forward problem involves deriving a low-order model that turns out to be accurate even deep into the shortwave regime. We show that the weakly-nonlinear problem is Kuramoto-Sivashinsky-like, allowing for greater analytical traction. The fully nonlinear problem can be solved numerically via the use of a rapid solver, enabling solution of both the forward and adjoint problems on sub-second timescales, allowing for both terminal and regulation optimal control studies to be implemented. Finally, we examine the feasibility of controlling direct numerical simulations using these techniques.

Thu, 06 May 2021

12:00 - 13:30
Virtual

Bio-Inspired Noise Control

Lorna Ayton
(Cambridge)
Abstract

Noise is generated in an aerodynamic setting when flow turbulence encounters a structural edge, such as at the sharp trailing edge of an aerofoil. The generation of this noise is unavoidable, however this talk addresses various ways in which it may be mitigated through altering the design of the edge. The alterations are inspired by natural silent fliers: owls. A short review of how trailing-edge noise is modelled will be given, followed by a discussion of two independent adaptations; serrations, and porosity. The mathematical impacts of the adaptations to the basic trailing-edge model will be presented, along with the physical implications they have on noise generation and control.

Thu, 29 Apr 2021

12:00 - 13:00
Virtual

Bubble propagation in modified Hele-Shaw channels

Alice Thompson
(Manchester)
Abstract

The propagation of a deformable air finger or bubble into a fluid-filled channel with an imposed pressure gradient was first studied by Saffman and Taylor. Assuming large aspect ratio channels, the flow can be depth-averaged and the free-boundary problem for steady propagation solved by conformal mapping. Famously, at zero surface tension, fingers of any width may exist, but the inclusion of vanishingly small surface tension selects symmetric fingers of discrete finger widths. At finite surface tension, Vanden-Broeck later showed that other families of 'exotic' states exist, but these states are all linearly unstable.

In this talk, I will discuss the related problem of air bubble propagation into rigid channels with axially-uniform, but non-rectangular, cross-sections. By including a centred constriction in the channel, multiple modes of propagation can be stabilised, including symmetric, asymmetric and oscillatory states, with a correspondingly rich bifurcation structure. These phenomena can be predicted via depth-averaged modelling, and also observed in our experiments, with quantitative agreement between the two in appropriate parameter regimes. This agreement provides insight into the physical mechanisms underlying the observed behaviour. I will outline our efforts to understand how the system dynamics is affected by the presence of nearby unstable solution branches acting as edge states. Finally, I will discuss how feedback control and control-based continuation could be used for direct experimental observation of stable or unstable modes.

Thu, 11 Mar 2021

12:30 - 13:30
Virtual

Towards Living Synthetic Matter

Michael Brenner
(Harvard)
Further Information

This final OCIAM seminar of the term takes place slightly later than usual at 12:30 

Abstract

Biological systems provide an inspiration for creating a new paradigm
for materials synthesis. What would it take to enable inanimate material
to acquire the properties of living things? A key difference between
living and synthetic materials is that the former are programmed to
behave as they do, through interactions, energy consumption and so
forth. The nature of the program is the result of billions of years of
evolution. Understanding and emulating this program in materials that
are synthesizable in the lab is a grand challenge. At its core is an
optimization problem: how do we choose the properties of material
components that we can create in the lab to carry out complex reactions?
I will discuss our (not-yet-terribly-successful efforts)  to date to
address this problem, by designing both equiliibrium and kinetic 
properties of materials, using a combination of statistical mechanics,
kinetic modeling and ideas from machine learning.

Thu, 04 Mar 2021

12:00 - 13:00
Virtual

The Power of Film

John Wettlaufer
(Yale/Nordita)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

The pandemic has had a deleterious influence on the Hollywood film
industry.  Fortunately,  however, the thin film industry continues to
flourish.  A host of effects are responsible for confined liquids
exhibiting properties that differ from their bulk counterparts. For
example, the dominant polarization and surface forces across a layered
system can control the material behavior on length scales vastly larger
than the film thickness.  This basic class of phenomena, wherein
volume-volume interactions create large pressures, are at play in,
amongst many other settings, wetting, biomaterials, ceramics, colloids,
and tribology.  When the films so created involve phase change and are
present in disequilibrium, the forces can be so large that they destroy
the setting that allowed them to form in the first place. I will
describe the connection between such films in a semi-traditional wetting
dynamics geometry and active brownian dynamics.  I then explore their
power to explain a wide range of processes from materials- to astro- to
geo-science.

Thu, 25 Feb 2021

12:00 - 13:00
Virtual

Asymptotic analysis of phase-field models

Andreas Muench
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

We study the evolution of solid surfaces and pattern formation by
surface diffusion. Phase field models with degenerate mobilities are
frequently used to model such phenomena, and are validated by
investigating their sharp interface limits. We demonstrate by a careful
asymptotic analysis involving the matching of exponential terms that a
certain combination of degenerate mobility and a double well potential
leads to a combination of both surface and non-linear bulk diffusion to
leading order. If time permits, we will discuss implications and extensions.

Thu, 18 Feb 2021

12:00 - 13:00
Virtual

Identifiability and inference for models in mathematical biology.

Professor Ruth Baker
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of quantitative data now being generated. This sets a new challenge for the field – to develop, calibrate and analyse new, biologically realistic models to interpret these data. In this talk I will showcase how quantitative comparisons between models and data can help tease apart subtle details of biological mechanisms, as well as present some steps we have taken to tackle the mathematical challenges in developing models that are both identifiable and can be efficiently calibrated to quantitative data.

Thu, 11 Feb 2021

12:00 - 13:00
Virtual

Peristalsis, beading and hexagons: three short stories about elastic instabilities in soft solids

John Biggins
(Cambridge)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

This talk will be three short stories on the general theme of elastic
instabilities in soft solids. First I will discuss the inflation of a
cylindrical cavity through a bulk soft solid, and show that such a
channel ultimately becomes unstable to a finite wavelength peristaltic
undulation. Secondly, I will introduce the elastic Rayleigh Plateau
instability, and explain that it is simply 1-D phase separation, much
like the inflationary instability of a cylindrical party balloon. I will
then construct a universal near-critical analytic solution for such 1-D
elastic instabilities, that is strongly reminiscent of the
Ginzberg-Landau theory of magnetism. Thirdly, and finally, I will
discuss pattern formation in layer-substrate buckling under equi-biaxial
compression, and argue, on symmetry grounds, that such buckling will
inevitably produce patterns of hexagonal dents near threshold.

Thu, 04 Feb 2021

12:00 - 13:00
Virtual

From Fast Cars to Breathing Aids: the UCL Ventura Non-Invasive Ventilator for COVID-19

Rebecca Shipley
(UCL)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

In March 2020, as COVID-19 cases started to surge for the first time in the UK, a team spanning UCL engineers, University College London Hospital (UCLH) intensivists and Mercedes Formula 1 came together to design, manufacture and deploy non-invasive breathing aids for COVID-19 patients. We reverse engineered and an off-patent CPAP (continuous positive airways pressure) device, the Philips WhisperFlow, and changed its design to minimise its oxygen utilisation (given that hospital oxygen supplies are under extreme demand). The UCL-Ventura received regulatory approvals from the MHRA within 10 days, and Mercedes HPP manufactured 10,000 devices by mid-April. UCL-Ventura CPAPs are now in use in over 120 NHS hospitals.


In response to international need, the team released all blueprints open source to enable local manufacture in other countries, alongside a support package spanning technical, manufacturing, clinical and regulatory components. The designs have been downloaded 1900 times across 105 countries, and around 20 teams are now manufacturing at scale and deploying in local hospitals. We have also worked closely with NGOs, on a non-profit basis, to deliver devices directly to countries with urgent need, including Palestine, Uganda and South Africa.

Thu, 28 Jan 2021

12:00 - 13:00
Virtual

Rheology of dense granular suspensions

Elisabeth Guazzelli
(MSC CNRS Université de Paris)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

Suspensions are composed of mixtures of particles and fluid and are
ubiquitous in industrial processes (e.g. waste disposal, concrete,
drilling muds, metalworking chip transport, and food processing) and in
natural phenomena (e.g. flows of slurries, debris, and lava). The
present talk focusses on the rheology of concentrated suspensions of
non-colloidal particles. It addresses the classical shear viscosity of
suspensions but also non-Newtonian behaviour such as normal-stress
differences and shear-induced migration. The rheology of dense
suspensions can be tackled via a diversity of approaches that are
introduced. In particular, the rheometry of suspensions can be
undertaken at an imposed volume fraction but also at imposed values of
particle normal stress, which is particularly well suited to yield
examination of the rheology close to the jamming transition. The
influences of particle roughness and shape are discussed.

Thu, 21 Jan 2021

12:00 - 13:30
Virtual

Node-based approximation of contagion dynamics on networks

Cameron Hall
(University of Bristol)
Abstract

Contagion models on networks can be used to describe the spread of information, rumours, opinions, and (more topically) diseases through a population. In the simplest contagion models, each node represents an individual that can be in one of a number of states (e.g. Susceptible, Infected, or Recovered), and the states of the nodes evolve according to specified rules. Even with simple Markovian models of transmission and recovery, it can be difficult to compute the dynamics of contagion on large networks: running simulations can be slow, and the system of master equations is typically too large to be tractable.

 One approach to approximating contagion dynamics is to assume that each node state is independent of the neighbouring node states; this leads to a system of ODEs for the node state probabilities (the “first-order approximation”) that always overestimates the speed of infection spread. This approach can be made more sophisticated by introducing pair approximations or higher-order moment closures, but this dramatically increases the size of the system and slows computations. In this talk, I will present some alternative node-based approximations for contagion dynamics. The first of these is exact on trees but will always underestimate the speed of infection spread on a network with loops. I will show how this can be combined with the classic first-order node-based approximation to obtain a node-based approximation that has similar accuracy to the pair approximation, but which is considerably faster to solve.

Thu, 03 Dec 2020

16:00 - 17:30
Virtual

Kirigami

Lakshminarayanan Mahadevan
(Harvard)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Kirigami, the relatively unheralded cousin of origami, is the art of cutting paper to articulate and deploy it as a whole. By varying the number, size, orientation and coordination of the cuts, artists have used their imagination and intuition to create remarkable sculptures in 2 and 3 dimensions. I will describe some of our attempts to quantify the inverse problem that artists routinely solve, combining elementary mathematical ideas, with computations and physical models. 

[[{"fid":"60095","view_mode":"media_portrait_large","fields":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-portrait-large","data-delta":"1"}}]]

 

Thu, 26 Nov 2020

16:00 - 17:00
Virtual

Convective instabilities in ternary alloy solidification

Daniel M. Anderson
(George Mason University)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Abstract

Daniel M. Anderson

Department of Mathematical Sciences, George Mason University

Applied and Computational Mathematics Division, NIST

Binary and multicomponent alloy solidification occurs in many industrial materials science applications as well as in geophysical systems such as sea ice. These processes involve heat and mass transfer coupled with phase transformation dynamics and can involve the formation of mixed phase regions known as mushy layers.  The understanding of transport mechanisms within mushy layers has important consequences for how these regions interact with the surrounding liquid and solid regions.  Through linear stability analyses and numerical calculations of mathematical models, convective instabilities that occur in solidifying ternary alloys will be explored.  Novel fluid dynamical phenomena that are predicted for these systems will be discussed.

Thu, 19 Nov 2020

16:00 - 17:00
Virtual

OCIAM DPhils present their research

Amy Kent, Michael Negus, Edwina Yeo and Helen Zha
(University of Oxford)
Abstract

Amy Kent

Multiscale Mathematical Models for Tendon Tissue Engineering

 

Tendon tissue engineering aims to grow functional tendon in vitro. In bioreactor chambers, cells growing on a solid scaffold are fed with nutrient-rich media and stimulated by mechanical loads. The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences is developing a Humanoid Robotic Bioreactor, where cells grow on a flexible fibrous scaffold actuated by a robotic shoulder. Tendon cells modulate their behaviour in response to shear stresses - experimentally, it is desirable to design robotic loading regimes that mimic physiological loads. The shear stresses are generated by flowing cell media; this flow induces deformation of the scaffold which in turn modulates the flow. Here, we capture this fluid-structure interaction using a homogenised model of fluid flow and scaffold deformation in a simplified bioreactor geometry. The homogenised model admits analytical solutions for a broad class of forces representing robotic loading. Given the solution to the microscale problem, we can determine microscale shear stresses at any point in the domain. In this presentation, we will outline the model derivation and discuss the experimental implications of model predictions.

=======================

Michael Negus

High-Speed Droplet Impact Onto Deformable Substrates: Analysis And Simulations

 

The impact of a high-speed droplet onto a substrate is a highly non-linear, multiscale phenomenon and poses a formidable challenge to model. In addition, when the substrate is deformable, such as a spring-suspended plate or an elastic sheet, the fluid-structure interaction introduces an additional layer of complexity. We present two modeling approaches for droplet impact onto deformable substrates: matched asymptotics and direct numerical simulations. In the former, we use Wagner's theory of impact to derive analytical expressions which approximate the behaviour during the early stages of the impact. In the latter, we use the open source volume-of-fluid code Basilisk to conduct direct numerical simulations designed to both validate the analytical framework and provide insight into the later times of impact. Through both methods, we are able to observe how the properties of the substrate, such as elasticity, affect the behaviour of the flow. We conclude by showing how these methods are complementary, as a combination of both can lead to a thorough understanding of the droplet impact across timescales.

=======================

Edwina Yeo

Modelling of Magnetically Targeted Stem Cell Delivery

 

Targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. One possible approach is to inject cells implanted withmagnetic nanoparticles into the blood stream. Cells can then be targeted to the delivery site by an external magnetic field. At the injury site, it is of criticalimportance that the cells do not form an aggregate which could significantly occlude the vessel.We develop a model for the transport of magnetically tagged cells in blood under the action of an external magnetic field. We consider a system of blood and stem cells in a single vessel.  We exploit the small aspect ratio of the vessel to examine the system asymptotically. We consider the system for a range of magnetic field strengths and varying strengths of the diffusion coefficient of the stem cells. We explore the different regimes of the model and determine the optimal conditions for the effective delivery of stem cells while minimising vessel occlusion.


=======================

Helen Zha

Mathematical model of a valve-controlled, gravity driven bioreactor for platelet production

Hospitals sometimes experience shortages of donor blood platelet supplies, motivating research into~\textit{in vitro}~production of platelets. We model a novel platelet bioreactor described in Shepherd et al [1]. The bioreactor consists of an upper channel, a lower channel, and a cell-seeded porous collagen scaffold situated between the two. Flow is driven by gravity, and controlled by valves on the four inlets and outlets. The bioreactor is long relative to its width, a feature which we exploit to derive a lubrication reduction of unsteady Stokes flow coupled to Darcy. As the shear stress experienced by cells influences platelet production, we use our model to quantify the effect of varying pressure head and valve dynamics on shear stress.

 

[1] Shepherd, J.H., Howard, D., Waller, A.K., Foster, H.R., Mueller, A., Moreau, T., Evans, A.L., Arumugam, M., Chalon, G.B., Vriend, E. and Davidenko, N., 2018. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity. Biomaterials.

Thu, 12 Nov 2020

16:00 - 17:00
Virtual

The fluid mechanics of suspensions

Helen Wilson
(University College London)
Further Information
Abstract

Materials made from a mixture of liquid and solid are, instinctively, very obviously complex. From dilatancy (the reason wet sand becomes dry when you step on it) to extreme shear-thinning (quicksand) or shear-thickening (cornflour oobleck) there is a wide range of behaviours to explain and predict. I'll discuss the seemingly simple case of solid spheres suspended in a Newtonian fluid matrix, which still has plenty of surprises up its sleeve.

Thu, 05 Nov 2020

16:00 - 17:30
Virtual

Stupid, but smart: chemotactic and autochemotactic effects in self-propelling droplets

Corinna Maass
(MPI Dynamics & Self-Organization)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Artificial microswimmers are an emerging field of research, attracting
interest as testing beds for physical theories of complex biological
entities, as inspiration for the design of smart materials, and for the
sheer elegance, and often quite counterintuitive phenomena of
experimental nonlinear dynamics.

Self-propelling droplets are among the most simplified swimmer models
imaginable, requiring just three components (oil, water, surfactant). In
this talk, I will show how these inherently stupid objects can make
surprisingly smart decisions based on interactions with microfluidic
structures and self-generated and external chemical fields.

Thu, 29 Oct 2020

16:00 - 17:00
Virtual

A Theory for Undercompressive Shocks in Tears of Wine

Andrea Bertozzi
(University of California Los Angeles)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

We revisit the tears of wine problem for thin films in
water-ethanol mixtures and present a new model for the climbing
dynamics. The new formulation includes a Marangoni stress balanced by
both the normal and tangential components of gravity as well as surface
tension which lead to distinctly different behavior. The combined
physics can be modeled mathematically by a scalar conservation law with
a nonconvex flux and a fourth order regularization due to the bulk
surface tension. Without the fourth order term, shock solutions must
satisfy an entropy condition - in which characteristics impinge on the
shock from both sides. However, in the case of a nonconvex flux, the
fourth order term is a singular perturbation that allows for the
possibility of undercompressive shocks in which characteristics travel
through the shock. We present computational and experimental evidence
that such shocks can happen in the tears of wine problem, with a
protocol for how to observe this in a real life setting.

Thu, 22 Oct 2020

16:00 - 17:00
Virtual

Thin Film Flows on a Substrate of Finite Width: A Novel Similarity Solution

Howard Stone
(Princeton)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.

Thu, 15 Oct 2020

16:00 - 17:00
Virtual

Inversion in Volvox: Forces and Fluctuations of Cell Sheet Folding

Pierre Haas
(University of Oxford)
Abstract

Tissue folding during animal development involves an intricate interplay
of cell shape changes, cell division, cell migration, cell
intercalation, and cell differentiation that obfuscates the underlying
mechanical principles. However, a simpler instance of tissue folding
arises in the green alga Volvox: its spherical embryos turn themselves
inside out at the close of their development. This inversion arises from
cell shape changes only.

In this talk, I will present a model of tissue folding in which these
cell shape changes appear as variations of the intrinsic stretches and
curvatures of an elastic shell. I will show how this model reproduces
Volvox inversion quantitatively, explains mechanically the arrest of
inversion observed in mutants, and reveals the spatio-temporal
regulation of different biological driving processes. I will close with
two examples illustrating the challenges of nonlinearity in tissue
folding: (i) constitutive nonlinearity leading to nonlocal elasticity in
the continuum limit of discrete cell sheet models; (ii) geometric
nonlinearity in large bending deformations of morphoelastic shells.
 

Thu, 18 Jun 2020

16:00 - 16:45
Virtual

OCIAM learns ... about wrinkling.

Professor Dominic Vella
(Mathematical Institute)
Further Information

This term's IAM seminar, a bi-weekly series entitled, 'OCIAM learns about ...' will involve internal speakers giving a general introduction to a topic on which they are experts.

Join the seminar in Zoom

https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09 
 Meeting ID: 917 3329 6449Password: 329856One 

Abstract


This week Professor Dominic Vella will talk about wrinkling  

In this talk I will provide an overview of recent work on the wrinkling of thin elastic objects. In particular, the focus of the talk will be on answering questions that arise in recent applications that seek not to avoid, but rather, exploit wrinkling. Such applications usually take place far beyond the threshold of instability and so key themes will be the limitations of “standard” instability analysis, as well as what analysis should be performed instead. I will discuss the essential ingredients of this ‘Far-from-Threshold’ analysis, as well as outlining some open questions.  

Thu, 04 Jun 2020

16:00 - 16:45

OCIAM learns...about modelling ice sheets

Professor Ian Hewitt
(Mathematical Institute)
Further Information

A new bi-weekly seminar series, 'OCIAM learns ..."

Internal speakers give a general introduction to a topic on which they are experts.

Abstract

Abstract

This talk will provide an overview of mathematical modelling applied to the behaviour of ice sheets and their role in the climate system.  I’ll provide some motivation and background, describe simple approaches to modelling the evolution of the ice sheets as a fluid-flow problem, and discuss some particular aspects of the problem that are active areas of current research.  The talk will involve a variety of interesting continuum-mechanical models and approximations that have analogues in other areas of applied mathematics.


You can join the meeting by clicking on the link below.
Join Zoom Meeting
https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09
Meeting ID: 917 3329 6449
Password: 329856

Thu, 28 May 2020

16:00 - 16:45

OCIAM learns ... about the many facets of community detection on networks 

Professor Renaud Lambiotte
(Mathematical Institute)
Further Information

A new bi-weekly seminar series, 'OCIAM learns...."

Internal speakers give a general introduction to a topic on which they are experts.

Abstract

The many facets of community detection on networks 

Community detection, the decomposition of a graph into essential building blocks, has been a core research topic in network science over the past years. Since a precise notion of what consti- tutes a community has remained evasive, community detection algorithms have often been com- pared on benchmark graphs with a particular form of assortative community structure and classified based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different goals and rea- sons for why we want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different facets of community detection also delineates the many lines of research and points out open directions and avenues for future research.