Forthcoming events in this series
Free-by-cyclic groups are large
Abstract
I will introduce and motivate the concept of largeness of a group. I will then show how tools from different areas of mathematics can be applied to show that all free-by-cyclic groups are large (and try to convince you that this is a good thing).
Totally geodesic surfaces and Dehn surgery.
Abstract
I will show how to construct an infinite family of totally geodesic surfaces in the figure eight knot complement that do not remain totally geodesic under certain Dehn surgeries. If time permits, I will explain how this behaviour can be understood via the theory of quadratic forms.
TQFTs to Segal Spaces
Abstract
We will discuss TQFTs (at a basic level), then higher categorical extensions, and see how these lead naturally to the notion of Segal spaces.
Hyperbolic volume (again): the case of the mapping tori
Abstract
Last week in the Kinderseminar I talked about a rough estimate on volumes of certain hyperbolic 3-manifolds. This time I will describe a different approach for similar estimates (you will not need to remember that talk, don't worry!), which is, in some sense, complementary to that one, as it regards mapping tori. A theorem of Jeffrey Brock provides bounds for their volume in terms of how the monodromy map acts on the pants graph (a relative of the better known curve complex) of the base surface. I will describe the setting and the relevance of this result (in particular the one it has for me); hopefully, I will also tell you part of its proof.
Introduction to Heegaard-Floer Homology
Abstract
A bit more than ten years ago, Peter Oszváth and Zoltán Szabó defined Heegaard-Floer homology, a gauge theory inspired invariant of three-manifolds that is designed to be more computable than its cousins, the Donaldson and Seiberg-Witten invariants for four-manifolds. This invariant is defined in terms of a Heegaard splitting of the three-manifold. In this talk I will show how Heegaard-Floer homology is defined (modulo the analysis that goes into it) and explain some of the directions in which people have taken this theory, such as knot theory and fitting Heegaard-Floer homology into the scheme of topological field theories.
16:00
Learning spaces
Abstract
Working together with the Blue Brain Project at the EPFL, I'm trying to develop new topological methods for neural modelling. As a mathematician, however, I'm really motivated by how these questions in neuroscience can inspire new mathematics. I will introduce new work that I am doing, together with Kathryn Hess and Ran Levi, on brain plasticity and learning processes, and discuss some of the topological and geometric features that are appearing in our investigations.
Quasirandomness for Finite Groups and Applications
Abstract
A group is said to be quasirandom if all its unitary representations have “large” dimension. After introducing quasirandom groups and their basic properties, I shall turn to recent applications in two directions: constructions of expanders and non-existence of large product-free sets.
Aperiodic tilings and Groups
Abstract
It is an open question whether a group with a finite classifying space is hyperbolic or contains a Baumslag Solitar Subgroup. An idea of Gromov was to use aperiodic tilings of the plane to try and disprove this conjecture. I will be looking at some of the attempts to find a counterexample.
Ascending HNN extensions and the BNS invariant
Abstract
Boundaries of Random Walks
Abstract
I will talk about random walks on groups and define the Poisson boundary of such. Studying it gives criteria for amenability or growth. I will outline how this can be used and describe recent related results and still open questions.
Group von Neumann algebras of locally compact HNN-extensions
Abstract
This talk consists of three parts. As a motivation, we are first going to introduce von Neumann algebras associated with discrete groups and briefly describe their interplay with measurable group theory. Next, we are going to consider group von Neumann algebras of general locally compact groups and highlight crucial differences between the discrete and the non-discrete case. Finally, we present some recent results on group von Neumann algebras associated with certain locally compact HNN-extensions.
Constructing a sigma model for the symmetric product of $R^D$
Abstract
In this talk I will describe an attempt to construct a conformal field theory with target space a symmetric product of $R^D$ (referred to by physicists as orbifold sigma model). The construction uses branched covers of $S^2$ to lift the well studied formulation of a sigma model on $S^2$, in terms of vertex operator algebras, to higher genus surfaces. I will motivate and explain this construction.
Partial actions of Groups in Coarse Geometry
Abstract
Group actions play an important role in both topological problems and coarse geometric conjectures. I will introduce the idea of a partial action of a group on a metric space and explain, in the case of certain classes of coarsely disconnected spaces, how partial actions can be used to give a geometric proof of a result of Willett and Yu concerning the coarse Baum-Connes conjecture.
Amenable hyperbolic groups
Abstract
The integers (while wonderful in many others respects) do not make for fascinating Geometric Group Theory. They are, however, essentially the only infinite finitely generated group which is both hyperbolic and amenable. In the class of locally compact topological groups, the intersection of these two notions is richer, and the major aim of this talk will be to give the structure of a classification of such groups due to Caprace-de Cornulier-Monod-Tessera, beginning with Milnor's proof that any connected Lie group admitting a left-invariant negatively curved Riemannian metric is necessarily soluble.
Some Decision Problems in Groups
Abstract
To continue the day's questions of how complex groups can be I will
be looking about some decision problems. I will prove that certain
properties of finitely presented groups are undecidable. These
properties are called Markov properties and include many nice properties
one may want a group to have. I will also hopefully go into an
algorithm of Whitehead on deciding if a set of n words generates F_n.
From Riches to RAAGs: Special Cube Complexes and the Virtual Haken Theorem (Part 2)
Abstract
I will outline Bergeron-Wise’s proof that the Virtual Haken Conjecture follows from Wise’s Conjecture on virtual specialness of non-positively curved cube complexes. If time permits, I will sketch some highlights from the proof of Wise’s Conjecture due to Agol and based on the Weak Separation Theorem of Agol-Groves-Manning.
Self-similar groups
Abstract
Self-similarity is a fundamental idea in many areas of mathematics. In this talk I will explain how it has entered group theory and the links between self-similar groups and other areas of research. There will also be pretty pictures.
Configuration spaces and homological stability (or, what I did for the last three and a half years)
Abstract
First of all, I will give an overview of what the
phenomenon of homological stability is and why it's useful, with plenty
of examples. I will then introduce configuration spaces -- of various
different kinds -- and give an overview of what is known about their
homological stability properties. A "configuration" here can be more
than just a finite collection of points in a background space: in
particular, the points may be equipped with a certain non-local
structure (an "orientation"), or one can consider unlinked
embedded copies of a fixed manifold instead of just points. If by some
miracle time permits, I may also say something about homological
stability with local coefficients, in general and in particular for
configuration spaces.
Equations over groups
Abstract
The theory of equations
over groups goes back to the very beginning of group theory and is
linked to many deep problems in mathematics, such as the Diophantine
problem over rationals. In this talk, we shall survey some of the key
results on equations over groups,
give an outline of the Makanin-Razborov process (an algorithm for
solving equations over free groups) and its connections to other results
in group theory and low-dimensional topology.
Uniform Hyperbolicity of the Curve Graph
Abstract
We will discuss (very) recent work by Hensel; Przytycki and Webb, who describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
Outomorphisms of Out(F_n) are trivial for n>2
Abstract
The eponymous result is due to Bridson and Vogtmann, and was proven in their paper "Automorphisms of Automorphism Groups of Free Groups" (Journal of Algebra 229). While I'll remind you all the basic definitions, it would be very helpful to be already somewhat familiar with the outer space.
Cubulating small cancellation and random groups
Abstract
I'll discuss work of Wise and Ollivier-Wise that gives cubulations of certain small cancellation and random groups, which in turn shows that they do not have property (T).