Past Junior Topology and Group Theory Seminar

30 January 2019
16:00
Gareth Wilkes
Abstract

When groups may be built up as graphs of 'simpler' groups, it is often 
of interest to study how good residual finiteness properties of simpler 
groups can imply residual properties of the whole. The essential case of 
this theory is the study of residual properties of finite groups. In 
this talk I will discuss the question of when a graph of finite 
$p$-groups is residually $p$-finite, for $p$ a prime. I describe the 
previous theorems in this area for one-edge and finite graphs of groups, 
and their method of proof. I will then state my recent generalisation of 
these theorems to potentially infinite graphs of groups, together with 
an alternative and more natural method of proof. Finally I will briefly 
describe a usage of these results in the study of accessibility -- 
namely the existence of a finitely generated inaccessible group which is 
residually $p$-finite.

  • Junior Topology and Group Theory Seminar
23 January 2019
16:00
Richard Wade
Abstract

I will give a description of a method introduced by N. Ivanov to study the abstract commensurator of a group by using a rigid action of that group on a graph. We will sketch Ivanov's theorem regarding the abstract commensurator of a mapping class group. Time permitting, I will describe how these methods are used in some of my recent work with Horbez on outer automorphism groups of free groups.

  • Junior Topology and Group Theory Seminar
16 January 2019
16:00
Matthias Nagel
Abstract

Knot theory investigates the many ways of embedding a circle into the three-dimensional sphere. The study of these embeddings is not only important for understanding three-dimensional manifolds, but is also intimately related to many new and surprising phenomena appearing in dimension four. I will discuss how four-dimensional interpretations of some invariants can help us understand surfaces that bound a given link (embedding of several disjoint circles).

  • Junior Topology and Group Theory Seminar
28 November 2018
16:00
Nicolaus Heuer
Abstract

In 1982, Gromov introduced bounded cohomology to give estimates on the minimal volume of manifolds. Since then, bounded cohomology has become an independent and active research field. In this talk I will give an introduction to bounded cohomology, state many open problems and relate it to other fields. 

  • Junior Topology and Group Theory Seminar
14 November 2018
16:30
David Hume
Abstract

Polycyclic groups either have polynomial growth, in which case they are virtually nilpotent, or exponential growth. I will give two interesting examples of "small" polycyclic groups which are extensions of $\mathbb{R}^2$ and the Heisenberg group by the integers, and attempt to justify the claim that they are small by sketching an argument that every exponential growth polycyclic group contains one of these.

  • Junior Topology and Group Theory Seminar
7 November 2018
16:00
Sam Colvin
Abstract

You’re an amateur investigator hired to uncover the mysterious goings on of a dark cult. They call themselves Geometric Group Theorists and they’re under suspicion of pushing humanity’s knowledge too far. You’ve tracked them down to their supposed headquarters. Foolishly, you enter. Your mind writhes as you gaze unwittingly upon the Eldritch horror they’ve summoned… Group Theory! You think fast; donning the foggy glasses of quasi-isometry, you prevent your mind shattering from the unfathomable complexity of The Beast. You spy a weak spot and the phrase `Gromov Hyperbolicity’ flashes across your mind. You peer deeper, further, forever… only to find yourself somewhere rather familiar, strange, but familiar… no, self-similar! You’ve fought with fractals before, this weirdness can be tamed! Your insight is sufficient and The Beast retreats for now.
In other words, given an infinite group, we associate to it an infinite graph, called a Cayley graph, which gives us a notion of the ‘geometry’ of a group. Through this we can ask what kind of groups have hyperbolic geometry, or at least an approximation of it called Gromov hyperbolicity. Hyperbolic groups are quite a nice class of groups but a large one, so we introduce the Gromov boundary of a hyperbolic group and explain how it can be used to distinguish groups in this class.

  • Junior Topology and Group Theory Seminar
31 October 2018
16:00
Joseph Scull
Abstract


A core problem in the study of manifolds and their topology is that of telling them apart. That is, when can we say whether or not two manifolds are homeomorphic? In two dimensions, the situation is simple, the Classification Theorem for Surfaces allows us to differentiate between any two closed surfaces. In three dimensions, the problem is a lot harder, as the century long search for a proof of the Poincaré Conjecture demonstrates, and is still an active area of study today.
As an early pioneer in the area of 3-manifolds Seifert carved out his own corner of the landscape instead of attempting to tackle the entire problem. By reducing his scope to the subclass of 3-manifolds which are today known as Seifert fibred spaces, Seifert was able to use our knowledge of 2-manifolds and produce a classification theorem of his own.
In this talk I will define Seifert fibred spaces, explain what makes them so much easier to understand than the rest of the pack, and give some insight on why we still care about them today.
 

  • Junior Topology and Group Theory Seminar
24 October 2018
16:00
Benjamin Brück
Abstract

"Fibre theorems" in the style of Quillen's fibre lemma are versatile tools used to study the topology of partially ordered sets. In this talk, I will formulate two of them and explain how these can be used to determine the homotopy type of the complex of (conjugacy classes of) free factors of a free group.
The latter is joint work with Radhika Gupta (see https://arxiv.org/abs/1810.09380).

  • Junior Topology and Group Theory Seminar
17 October 2018
16:00
Motiejus Valiunas
Abstract

Graph products are a class of groups that 'interpolate' between direct and free products, and generalise the notion of right-angled Artin groups. Given a property that free products (and maybe direct products) are known to satisfy, a natural question arises: do graph products satisfy this property? For instance, it is known that graph products act on tree-like spaces (quasi-trees) in a nice way (acylindrically), just like free products. In the talk we will discuss a construction of such an action and, if time permits, its relation to solving systems of equations over graph products.

  • Junior Topology and Group Theory Seminar

Pages