Warped cones are infinite metric spaces that are associated with actions by homeomorphisms on metric spaces. In this talk I will try to explain why the coarse geometry of warped cones can be seen as an invariant of the action and what it can tell us about the acting group.
Past Junior Topology and Group Theory Seminar
I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.
If $G$ is an irreducible lattice in a semisimple Lie group, every action of $G$ on a tree has a global fixed point. I will give an elementary discussion of Y. Shalom's proof of this result, focussing on the case of $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Emphasis will be placed on the geometric aspects of the proof and on the importance of reduced cohomology, while other representation theoretic/functional analytic tools will be relegated to a couple of black boxes.
I will present a gentle introduction to the theory of conformal dimension, focusing on its applications to the boundaries of hyperbolic groups, and the difficulty of classifying groups whose boundaries have conformal dimension 1.
I will compare features of (classical) cohomology theory of groups to the rather exotic features of bounded (or continuous bounded) cohomology of groups.
Besides giving concrete examples I will state classical cohomological tools/features and see how (if) they survive in the case of bounded cohomology. Such will include the Mayer-Vietoris sequence, the transfer map, resolutions, classifying spaces, the universal coefficient theorem, the cup product, vanishing results, cohomological dimension and relation to extensions.
Finally I will discuss their connection to each other via the comparison map.
By gluing copies of a deforming polytope, we describe some deformations of complete, finite-volume hyperbolic cone four-manifolds. Despite the fact that hyperbolic lattices are locally rigid in dimension greater than three (Garland-Raghunathan), we see a four-dimensional analogue of Thurston's hyperbolic Dehn filling: a path of cone-manifolds $M_t$ interpolating between two cusped hyperbolic four-manifolds $M_0$ and $M_1$.
This is a joint work with Bruno Martelli.