Forthcoming events in this series
10:00
Minimal definable sets in difference fields.
Abstract
I will speak about the Zilber trichotomy for weakly minimal difference varieties, and the definable structure on them.
A difference field is a field with a distinguished automorphism $\sigma$. Solution sets of systems of polynomial difference equations like
$3 x \sigma(x) +4x +\sigma^2(x) +17 =0$ are the quantifier-free definable subsets of difference fields. These \emph{difference varieties} are similar to varieties in algebraic geometry, except uglier, both from an algebraic and from a model-theoretic point of view.
ACFA, the model-companion of the theory of difference fields, is a supersimple theory whose minimal (i.e. U-rank $1$) types satisfy the Zilber's Trichotomy Conjecture that any non-trivial definable structure on the set of realizations of a minimal type $p$ must come from a definable one-based group or from a definable field. Every minimal type $p$ in ACFA contains a (weakly) minimal quantifier-free formula $\phi_p$, and often the difference variety defined by $\phi_p$ determines which case of the Zilber Trichotomy $p$ belongs to.
14:15
Schanuel's conjecture and dimension theory
Abstract
I will push Schanuel's conjecture in four directions: defining a dimension
theory (pregeometry), blurred exponential functions, exponential maps of
more general groups, and converses. The goal is to explain how Zilber's
conjecture on complex exponentiation is true at least in a "geometric"
sense, and how this can be proved without solving the difficult number
theoretic conjectures. If time permits, I will explain some connections
with diophantine geometry.
10:00
The classificatiion of structures interpretable in o-minimal theories
Abstract
We survey the classification of structures interpretable in o-minimal theories in terms of thorn-minimal types. We show that a necessary and sufficient condition for such a structure to interpret a real closed field is that it has a non-locally modular unstable type. We also show that assuming Zilber's Trichotomy for strongly minimal sets interpretable in o-minimal theories, such a structure interprets a pure algebraically closed field iff it has a global stable non-locally modular type. Finally, if time allows, we will discuss reasons to believe in Zilber's Trichotomy in the present context
14:15
15:15
Around Schanuel's conjecture for non-isoconstant semiabelian varieties over function fields
16:00
Motivic measure for pseudo-finite like fields
Abstract
To understand the definable sets of a theory, it is helpful to have some invariants, i.e. maps from the definable sets to somewhere else which are invariant under definable bijections. Denef and Loeser constructed a very strong such invariant for the theory of pseudo-finite fields (of characteristic zero): to each definable set, they associate a virtual motive. In this way one gets all the known cohomological invariants of varieties (like the Euler characteristic or the Hodge polynomial) for arbitrary definable sets.
I will first explain this, and then present a generalization to other fields, namely to perfect, pseudo-algebraically closed fields with pro-cyclic Galois group. To this end, we will construct maps between the set of definable sets of different such theories. (More precisely:
between the Grothendieck rings of these theories.) Moreover, I will show how, using these maps, one can extract additional information about definable sets of pseudo-finite fields (information which the map of Denef-Loeser loses).
15:15
AXIOMATIZING FIELDS VIA GALOIS THEORY
Abstract
By classical results of Tarski and Artin-Schreier, the elementary theory of the field of real numbers can be axiomatized in purely Galois-theoretic terms by describing the absolute Galois group of the field. Using work of Ax-Kochen/Ershov and a p-adic analogue of the Artin-Schreier theory the same can be proved for the field $\mathbb{Q}_p$ of p-adic numbers and for very few other fields.
Replacing, however, the absolute Galois group of a field K by that of the rational function field $K(t)$ over $K$, one obtains a Galois-theoretic axiomatiozation of almost arbitrary perfect fields. This gives rise to a new approach to longstanding decidability questions for fields like
$F_p((t))$ or $C(t)$.
15:15
Generalising o-minimality from within: theories arising naturally from the study of o-minimal structures
15:15
Borel Isomorphism Relations
Abstract
Countable Borel equivalence relations arise naturally as orbit equivalence
relations for countable groups. For each countable Borel equivalence relation E
there is an infinitary sentence such that E is equivalent to the isomorphism
relation on countable models of that sentence. For first order theories the
question is open.
15:15
15:15
Partially commutative groups: divisibility, orthogonal systems and universal theory.
Abstract
15:15
On connectedness of the centralizers of tori and other concerns around the Weyl group.
Abstract
I'll include a rather short proof of this connectedness in a group of finite
Morley rank, but I'll maybe spend most of the time talking about related matter
without giving proofs.
15:15
Garside's Solution to the Conjugacy Problem in the Braid Group
Abstract
15:00
Blurred exponentiation and the geometry of exponential fields
Abstract
15:15
11:00
15:15
Model Theory of difference varieties and algebraic dynamics over function fields
Abstract
\\Common\dfs\htdocs\www\maintainers\reception\enb\abstracts\logic\mt06\chadzidakis