Forthcoming events in this series

17:00

### Finite covers

## Abstract

(i) Work of Hrushovski which, for a stable theory, links splitting of certain finite covers with higher amalgamation properties;

(ii) Joint work of myself and Elisabetta Pastori which uses group cohomology to investigate some non-split finite covers of the set of k-sets from a disintegrated set.

16:00

### Hilbert's tenth problem for homolorphy rings in characteristic zero, via elliptic curves

17:00

### SUPERSIMPLE MOUFANG POLYGONS

## Abstract

Moufang polygons have been classified by Tits and Weiss, and a complete list is given in their book `Moufang polygons'.

This work is inspired by a paper of Kramer, Tent and van Maldeghem called "Simple groups of finite Morley rank and Tits buildings". The authors work in a superstable context. They show that Moufang polygons of finite Morley rank are exactly Pappian polygons, i.e., projective planes, symplectic quadrangles and split Cayley hexagons, provided that they arise over algebraically closed fields.

We work under the weaker assumption of supersimplicity. Therefore, we expect more examples. Indeed, apart from those already occuring in the finite Morley rank case, there are four further examples, up to duality, of supersimple Moufang polygons; namely, Hermitian quadrangles in projective dimension 3 and 4, the twisted triality hexagon and the (perfect) Ree-Tits octagon, provided that the underlying field (or `difference' field in the last case) is supersimple.

As a result, we obtain the nice characterization that supersimple Moufang polygons are exactly those Moufang polygons belonging to families which also arise over finite fields.

Examples of supersimple Moufang polygons are constructed via asymptoticity

arguments: every class C of finite Moufang polygons forms an asymptotic class, and every non-principal ultraproduct of C gives rise to a measurable structure, thus supersimple (of finite S_1 rank). For the remaining cases one can proceed as follows: let \Gamma be any Moufang polygon belonging to a family which does not arise over finite fields, and call K its underlying field; then K is

(first-order) definable in \Gamma, and by applying some model theoretic facts this definability is inconsistent with supersimplicity".

17:00

### Arithmetic and Geometric Irrationality via Substructures of Nonstandard Models

## Abstract

algebraic object can be used much like a microscope with which one may perceive and codify irrationality invisible within the standard model.

This will be done by examining the following three themes:

\item {\it Algebraic topology of foliated spaces} We define the fundamental germ, a generalization of fundamental group for foliations, and show that the fundamental germ of a foliation that covers a manifold $M$ is detected (as a substructure) by a nonstandard model of the fundamental group of $M$.

\item {\it Real algebraic number theory.} We introduce the group $(r)$ of diophantine approximations of a real number $r$, a subgroup of a nonstandard model of the integers, and show how $(r)$ gives rise to a notion of principal ideal generated by $r$.

The general linear group $GL(2, \mathbb{Z})$ plays here the role of a Galois group, permuting the real ideals of equivalent real numbers.

\item {\it Modular invariants of a Noncommutative Torus.} We use the fundamental germ of the associated Kronecker foliation as a lattice and define the notion of Eisenstein series, Weierstrass function, Weierstrass equation and j-invariant.

17:00

### Diamonds in Torsion of Abelian Varieties.

## Abstract

Hilbertian field is Hilbertian.

We conjecture that for an Abelian variety $A$ defined over

a Hilbertian field $K$

every extension $L$ of $K$ in $K(A_\tor)$ is Hilbertian.

We prove our conjecture when $K$ is a number field.

The proofs applies a result of Serre about $l$-torsion of

Abelian varieties, information about $l$-adic analytic

groups, and Haran's diamond theorem.

11:00

17:00

### Etale cohomology of difference schemes

## Abstract

Difference schemes constitute important building blocks in the model-theoretic study of difference fields.

Our goal is to pursue their number-theoretic aspects much further than required by model theory.

Roughly speaking, a difference scheme (variety) is a scheme

(variety) with a distinguished endomorphism. We will explain how to extend the methods of etale cohomology to this context and, time permitting, we will show the calculation of difference etale cohomology in some interesting cases.

### Choices of division sequences on complex elliptic curves

## Abstract

and let $a\in\mathbb{E}(\mathbb{C})$ be a complex point. Among the

possible choices of sequences of division points of $a$, $(a_n)_n$

such that $a_1 = a$ and $na_{nm} = a_m$, we can pick out those which

converge in the complex topology to the identity. We show that the

algebraic content of this effect of the complex topology is very

small, in the sense that any set of division sequences which shares

certain obvious algebraic properties with the set of those which

converge to the identity is conjugated to it by a field automorphism

of $\mathbb{C}$ over $k$.

As stated, this is a result of algebra and number theory. However, in

proving it we are led ineluctably to use model theoretic techniques -

specifically the concept of "excellence" introduced by Shelah for the

analysis of $L_{\omega_1,\omega}$ categoricity, which reduces the

question to that of proving certain unusual versions of the theorems

of Mordell-Weil and Kummer-Bashmakov. I will discuss this and other

aspects of the proof, without assuming any model- or number-theoretic

knowledge on the part of my audience.

### Some results on lovely pairs of geometric structures

## Abstract

has infinite models, T eliminates "there exist infinitely many" and

algebraic closure gives a pregeometry). I shall present some results

about T_P, the theory of lovely pairs of models of T as defined by

Berenstein and Vassiliev following earlier work of Ben-Yaacov, Pillay

and Vassiliev, of van den Dries and of Poizat. I shall present

results concerning superrosiness, the independence property and

imaginaries. As far as the independence property is concerned, I

shall discuss the relationship with recent work of Gunaydin and

Hieronymi and of Berenstein, Dolich and Onshuus. I shall also discuss

an application to Belegradek and Zilber's theory of the real field

with a subgroup of the unit circle. As far as imaginaries are

concerned, I shall discuss an application of one of the general

results to imaginaries in pairs of algebraically closed fields,

adding to Pillay's work on that subject.

### The geometries of the Hrushovski constructions.

## Abstract

### Fraïssé's construction from a topos-theoretic perspective

## Abstract

### Semiabelian varieties over separably closed fields

## Abstract

### Possible exponentiations over the universal enveloping algebra of sl(2,C)

## Abstract

### Linear equations over multiplicative groups in positive characteristic, sums of recurrences, and ergodic mixing

## Abstract

### Dependent Pairs

## Abstract

### Models of quantum phenomena

## Abstract

A formulation of quantum mechanics in terms of symmetric monoidal categories

provides a logical foundation as well as a purely diagrammatic calculus for

it. This approach was initiated in 2004 in a joint paper with Samson

Abramsky (Ox). An important role is played by certain Frobenius comonoids,

abstract bases in short, which provide an abstract account both on classical

data and on quantum superposition. Dusko Pavlovic (Ox), Jamie Vicary (Ox)

and I showed that these abstract bases are indeed in 1-1 correspondence with

bases in the category of Hilbert spaces, linear maps, and the tensor

product. There is a close relation between these abstract bases and linear

logic. Joint work with Ross Duncan (Ox) shows how incompatible abstract

basis interact; the resulting structures provide a both logical and

diagrammatic account which is sufficiently expressive to describe any state

and operation of "standard" quantum theory, and solve standard problems in a

non-standard manner, either by diagrammatic rewrite or by automation.

But are there interesting non-standard models too, and what do these teach

us? In this talk we will survey the above discussed approach, present some

non-standard models, and discuss in how they provide new insights in quantum

non-locality, which arguably caused the most striking paradigm shift of any

discovery in physics during the previous century. The latter is joint work

with Bill Edwards (Ox) and Rob Spekkens (Perimeter Institute).