Forthcoming events in this series


Fri, 06 Nov 2015

13:00 - 14:00
L6

PhD student talks

Pengyu Wei and Alissa Kleinnijenhuis
((Oxford University))
Abstract

Pengyu Wei's title: Ranking ForexMaster Players

Abstract:

In this talk I will introduce ForexMaster, a simulated foreign exchange trading platform, and how I rank players on this platform. Different methods are compared. In particular, I use random forest and a carefully chosen feature set, which includes not only traditional performance measures like Sharp ratio, but also estimates from the Plackett-Luce ranking model, which has not been used in the financial modelling yet. I show players selected by this method have satisfactory out-of-sample performance, and the Plackett-Luce model plays an important role.

 

Alissa Kleinnijenhuis title: Stress Testing the European Banking System: Exposure Risk & Overlapping Portfolio Risk
Abstract:
Current regulatory stress testing, as for example done by the EBA, BoE and the FED, is microprudential, non-systemic. These stress tests do not take into account systemic risk, even though the official aim of the stress test is the "test the resilience of the financial system as a whole, and the individual banks therein, to another crisis".
 Two papers are being developed that look at the interconnections between banks. One paper investigates the systemic risk in the European banking system due to interbank exposures, using EBA data. The other paper, looks at the trade-off between individual and systemic risk with overlapping portfolios. The above two "channels of contagion" for systemic risk can be incorporated in stress tests to include systemic components to the traditional non-systemic stress tests.

Fri, 30 Oct 2015

13:00 - 14:00
L6

PhD student talk (On robust pricing--hedging duality in continuous time)

Zhaoxu Hu
((Oxford University)))
Abstract

We pursue robust approach to pricing and hedging in mathematical finance. We consider a continuous time setting in which some underlying assets and options, with continuous paths, are available for dynamic trading and a further set of European options, possibly with varying maturities, is available for static trading. Motivated by the notion of prediction set in Mykland [03], we include in our setup modelling beliefs by allowing to specify a set of paths to be considered, e.g. super-replication of a contingent claim is required only for paths falling in the given set. Our framework thus interpolates between model--independent and model--specific settings and allows to quantify the impact of making assumptions or gaining information. We obtain a general pricing-hedging duality result: the infimum over superhedging prices is equal to supremum over calibrated martingale measures. In presence of non-trivial beliefs, the equality is between limiting values of perturbed problems. In particular, our results include the martingale optimal transport duality of Dolinsky and Soner [13] and extend it to multiple dimensions and multiple maturities.

Fri, 12 Jun 2015

12:30 - 14:00
L6

tbc

Michael Monoyios
Fri, 05 Jun 2015

12:30 - 14:00
L6

tbc

Sean Ledger
Fri, 08 May 2015

12:30 - 14:00
L5

Generalized Gauss and Expectation Inequalities via Semidefinite Programming

Paul Goulart
Abstract

This talk will describe methods for computing sharp upper bounds on the probability of a random vector falling outside of a convex set, or on the expected value of a convex loss function, for situations in which limited information is available about the probability distribution. Such bounds are of interest across many application areas in control theory, mathematical finance, machine learning and signal processing. If only the first two moments of the distribution are available, then Chebyshev-like worst-case bounds can be computed via solution of a single semidefinite program. However, the results can be very conservative since they are typically achieved by a discrete worst-case distribution. The talk will show that considerable improvement is possible if the probability distribution can be assumed unimodal, in which case less pessimistic Gauss-like bounds can be computed instead. Additionally, both the Chebyshev- and Gauss-like bounds for such problems can be derived as special cases of a bound based on a generalised definition of unmodality.

Fri, 06 Mar 2015
13:00
L6

Community structure in temporal multilayer networks, and its application to financial correlation networks

Marya Bazzi
(Maths Institute University of Oxford)
Abstract

Networks are a convenient way to represent systems of interacting entities. Many networks contain "communities" of nodes that are more densely connected to each other than to nodes in the rest of the network.

Most methods for detecting communities are designed for static networks. However, in many applications, entities and/or interactions between entities evolve in time.

We investigate "multilayer modularity maximization", a method for detecting communities in temporal networks. The main difference between this method and most previous methods for detecting communities in temporal networks is that communities identified in one temporal snapshot are not independent of connectivity patterns in other snapshots.  We show how the resulting partition reflects a trade-off between static community structure within snapshots and persistence of community structure between snapshots. As a focal example in our numerical experiments, we study time-dependent financial asset correlation networks.

Fri, 27 Feb 2015
13:00
L6

No arbitrage in progressive enlargement of filtration setting

Anna Aksamit
(Maths Institute University of Oxford)
Abstract

Our study addresses the question of how an arbitrage-free semimartingale model is affected when the knowledge about a random time is added. Precisely, we focus on the No-Unbounded-Profit-with-Bounded-Risk condition, which is also known in the literature as the first kind of no arbitrage. In the general semimartingale setting, we provide a sufficient condition on the random time and price process for which the no arbitrage is preserved under filtration enlargement. Moreover we study the condition on the random time for which the no arbitrage is preserved for any process. This talk is based on a joint work with Tahir Choulli, Jun Deng and Monique Jeanblanc.

Fri, 13 Feb 2015
13:00
L6

Zubov's method for controlled diffusions with state constraints

Athena Picarelli
(Maths Institute University of Oxford)
Abstract

We consider a controlled stochastic system in presence of state-constraints. Under the assumption of exponential stabilizability of the system near a target set, we aim to characterize the set of points which can be asymptotically driven by an admissible control to the target with positive probability. We show that this set can be characterized as a level set of the optimal value function of a suitable unconstrained optimal control problem which in turn is the unique viscosity solution of a second order PDE which can thus be interpreted as a generalized Zubov equation.

Fri, 06 Feb 2015
13:00
L6

Path-dependent PDE and Backward SDE

Shige Peng
(Maths Institute University of Oxford)
Abstract

In this talk we present a new type of Soblev norm defined in the space of functions of continuous paths. Under the Wiener probability measure the corresponding norm is suitable to prove the existence and uniqueness for a large type of system of path dependent quasi-linear parabolic partial differential equations (PPDE). We have establish 1-1 correspondence between this new type of PPDE and the classical backward SDE (BSDE). For fully nonlinear PPDEs, the corresponding Sobolev norm is under a sublinear expectation called G-expectation, in the place of Wiener expectation. The canonical process becomes a new type of nonlinear Brownian motion called G-Brownian motion. A similar 1-1 correspondence has been established. We can then apply the recent results of existence, uniqueness and principle of comparison for BSDE driven by G-Brownian motion to obtain the same result for the PPDE.

Fri, 30 Jan 2015
13:00
L6

Optimal investment and price dependence in a semi-static market

Pietro Siorpaes
(Maths Institute University of Oxford)
Abstract

We study the problem of maximizing expected utility from terminal wealth in a semi-static market composed of derivative securities, which we assume can be traded only at time zero, and of stocks, which can be
traded continuously in time and are modeled as locally-bounded semi-martingales.

Using a general utility function defined on the positive real line, we first study existence and uniqueness of the solution, and then we consider the dependence of the outputs of the utility maximization problem on the price of the derivatives, investigating not only stability but also differentiability, monotonicity, convexity and limiting properties.

Fri, 28 Nov 2014

13:00 - 14:00
L6

Rank Dependent Utility and Risk Taking

Xunyu Zhou
(Oxford University)
Abstract

We analyze the portfolio choice problem of investors who maximize rank dependent utility in a single-period complete market. We propose a new
notion of less risk taking: choosing optimal terminal wealth that pays off more in bad states and less in good states of the economy. We prove that investors with a less risk averse preference relation in general choose more risky terminal wealth, receiving a risk premium in return for accepting conditional-zero-mean noise (more risk). Such general comparative static results do not hold for portfolio weights, which we demonstrate with a counter-example in a continuous-time model. This in turn suggests that our notion of less risk taking is more meaningful than the traditional notion based on holding less stocks.

This is a joint work with Xuedong He and Roy Kouwenberg.

Fri, 21 Nov 2014

13:00 - 14:00
L6

tba

There will be no seminar in Week 6.
Fri, 14 Nov 2014

13:00 - 14:00
L6

Stochastic Portfolio Theory: How to beat the market with probability one

Alexander Vervuurt
(Oxford University)
Abstract

I introduce Stochastic Portfolio Theory (SPT), which is an alternative approach to optimal investment, where the investor aims to beat an index instead of optimising a mean-variance or expected utility criterion. Portfolios which achieve this are called relative arbitrages, and simple and implementable types of such trading strategies have been shown to exist in very general classes of continuous semimartingale market models, with unspecified drift and volatility processes but realistic assumptions on the behaviour of stocks which come from empirical observation. I present some of my recent work on this, namely the so-called diversity-weighted portfolio with negative parameter. This portfolio outperforms the market quite significantly, for which I have found both theoretical and empirical evidence.

Fri, 07 Nov 2014

13:00 - 14:00
L6

First Year DPhil Student Talks

Gonçalo Simões and Vladimirs Murevics
(Oxford University)
Abstract

1. Minimising Regret in Portfolio Optimisation (Simões)

When looking for an "optimal" portfolio the traditional approach is to either try to minimise risk or maximise profit. While this approach is probably correct for someone investing their own wealth, usually traders and fund managers have other concerns. They are often assessed taking into account others' performance, and so their decisions are molded by that. We will present a model for this decision making process and try to find our own "optimal" portfolio.

2. Systemic risk in financial networks (Murevics)

Abstract: In this paper I present a framework for studying systemic risk and financial contagion in interbank networks. The current financial health of institutions is expressed through an abstract measure of robustness, and the evolution of robustness in time is described through a system of stochastic differential equations. Using this model I then study how the structure of the interbank lending network affects the spread of financial contagion through different contagion channels and compare the results for different network structures. Finally I outline the future directions for developing this model.

Fri, 31 Oct 2014

13:00 - 14:00
L6

First Year DPhil Student Talks

Matthieu Mariapragassam and Siyuan Li
(Oxford University)
Abstract

1. Calibration and Pricing of Financial Derivatives using Forward PDEs (Mariapragassam)

Nowadays, various calibration techniques are in use in the financial industry and the exact re-pricing of call options is a must-have standard. However, practitioners are increasingly interested in taking into account the quotes of other derivatives as well.
We describe our approach to the calibration of a specific Local-Stochastic volatility model proposed by the FX group at BNP Paribas. We believe that forward PDEs are powerful tools as they allow to achieve stable and fast best-fit routines. We will expose our current results on this matter.

Joint work with Prof. Christoph Reisinger

2. Infinite discrete-time investment and consumption problem (Li)

We study the investment and consumption problem in infinite discrete-time framework. In our problem setting, we do not need the wealth process to be positive at any time point. We first analyze the time-consistent case and give the convergence of value function for infinite-horizon problem by value functions of finite-horizon problems.

Then we discuss the time-consistent case, and hope the value functions of finite-horizon problems will still converge to the infinite-horizon problem.

Fri, 24 Oct 2014

13:00 - 14:00
L3

First Year DPhil Student Talks

Andrei Cozma and Hendrik J Brackmann
(Oxford University)
Abstract

1. A Hybrid Monte-Carlo Partial Differential Solver for Stochastic  Volatility Models (Cozma)

In finance, Monte-Carlo and Finite Difference methods are the most popular approaches for pricing options. If the underlying asset is modeled by a multidimensional system of stochastic differential equations, an analytic solution is rarely available and working under a given computational budget comes at the cost of accuracy. The mixed Monte-Carlo partial differential solver introduced by Loeper and Pironneau (2009) is one way to overcome this issue and we investigate it thoroughly for a number of stochastic volatility models. Our main concern is to provide a rigorous mathematical proof of the convergence of the hybrid method under different frameworks, which in turn justifies the use of Monte-Carlo simulations to compute the expected discounted payoff of the financial derivative. Then, we carry out a quantitative assessment based on a European call option by comparison with alternative numerical methods.

2. tbc (Brackmann)

 

Fri, 13 Jun 2014

13:00 - 14:00
L6

tba

Johannes Ruf
Fri, 06 Jun 2014

13:00 - 14:00
L6

Big Data: Unleashing the Limitless

Ning Wang
Abstract

We are dwelling in the Big Data age. The diversity of the uses of Big Data unleashes limitless possibilities. Many people are talking about ways to use Big Data to track the collective human behaviours, monitor electoral popularity, and predict financial fluctuations in stock markets, etc. Big Data reveals both challenges and opportunities, which are not only related to technology but also to human itself. This talk will cover various current topics and trends in Big Data research. The speaker will share his relevant experiences on how to use analytics tools to obtain key metrics on online social networks, as well as present the challenges of Big Data analytics.

Bio: Ning Wang (Ph.D) works as Researcher at the Oxford Internet Institute. His research is driven by a deep interest in analysing a wide range of sociotechnical problems by exploiting Big Data approaches, with the hope that this work could contribute to the intersection of social behavior and computational systems.

Fri, 30 May 2014

13:00 - 14:00
L6

Big Data: Unleashing the Limitless

Ning Wang
Abstract

We are dwelling in the Big Data age. The diversity of the uses

of Big Data unleashes limitless possibilities. Many people are talking

about ways to use Big Data to track the collective human behaviours,

monitor electoral popularity, and predict financial fluctuations in

stock markets, etc. Big Data reveals both challenges and opportunities,

which are not only related to technology but also to human itself. This

talk will cover various current topics and trends in Big Data research.

The speaker will share his relevant experiences on how to use analytics

tools to obtain key metrics on online social networks, as well as

present the challenges of Big Data analytics.

\\

Bio: Ning Wang (Ph.D) works as Researcher at the Oxford Internet

Institute. His research is driven by a deep interest in analysing a wide

range of sociotechnical problems by exploiting Big Data approaches, with

the hope that this work could contribute to the intersection of social

behavior and computational systems.