Forthcoming events in this series


Thu, 21 Jan 2021

16:00 - 17:00

The statistics of firm growth rates

JOSE MORAN
(University of Oxford)
Abstract


Whether one uses the sales, the number of employees or any other proxy for firm "size", it is well known that this quantity is power-law distributed, with important consequences to aggregate macroeconomic fluctuations. The Gibrat model explained this by proposing that firms grow multiplicatively, and much work has been done to study the statistics of their growth rates. Inspired by past work in the statistics of financial returns, I present a new framework to study these growth rates. In particular, I will show that they follow approximately Gaussian statistics, provided their heteroskedastic nature is taken into account. I will also elucidate the size/volatility scaling relation, and show that volatility may have a strong sectoral dependence. Finally, I will show how this framework can be used to study intra-firm and supply chain dynamics.

Joint work with JP Bouchaud and Angelo Secchi.

Thu, 03 Dec 2020

16:00 - 17:00

Asymptotic Randomised Control with an application to bandit and dynamic pricing

Tanut Treetanthiploet
(University of Oxford)
Abstract

Abstract: In many situations, one needs to decide between acting to reveal data about a system and acting to generate profit; this is the trade-off between exploration and exploitation. A simple situation where we face this trade-off is a multiarmed bandit problem, where one has M ‘bandits’ which generate reward from an unknown distribution, and one must choose which bandit to play at each time. The key difficulty in the multi-armed bandit problem is that the action often affects the information obtained. Due to the curse of dimensionality, solving the bandit problem directly is often computationally intractable.

In this talk, we will formulate a general class of the multi-armed bandit problem as a relaxed stochastic control problem. By introducing an entropy premium, we obtain a smooth asymptotic approximation to the value function. This yields a novel semi-index approximation of the optimal decision process, obtained numerically by solving a fixed point problem, which can be interpreted as explicitly balancing an exploration–exploitation trade-off.  Performance of the resulting Asymptotic Randomised Control (ARC) algorithm compares favourably with other approaches to correlated multi-armed bandits.

As an application of the multi-armed bandit, we also consider a multi-armed bandit problem where the observation from each bandit arrive from a Generalised Linear Model. We then use such model to consider a dynamic online pricing problem. The numerical simulation shows that the ARC algorithm also performs well compared to others.
============

Thu, 26 Nov 2020

16:00 - 17:00

Regularity and time discretization of extended mean-field control problems: a McKean-Vlasov FBSDE approach

WOLFGANG STOCKINGER
(University of Oxford)
Abstract

We analyze the regularity of solutions and discrete-time approximations of extended mean-field control (extended MFC) problems, which seek optimal control of McKean-Vlasov dynamics with coefficients involving mean-field interactions both on the  state and actions, and where objectives are optimized over
open-loop strategies.

We show for a large class of extended MFC problems that the unique optimal open-loop control is 1/2-Hölder continuous in time. Based on the regularity of the solution, we prove that the value functions of such extended MFC problems can be approximated by those with piecewise constant controls and discrete-time state processes arising from Euler-Maruyama time stepping up to an order 1/2 error, which is optimal in our setting. Further, we show that any epsilon-optimal control of these discrete-time problems
converge to the optimal control of the original problems.

To establish the time regularity of optimal controls and the convergence of time discretizations, we extend the canonical path regularity results to general coupled 
McKean-Vlasov forward-backward stochastic differential equations, which are of independent interest.

This is based on join work joint work with C. Reisinger and Y. Zhang.

Thu, 19 Nov 2020

16:00 - 17:00

Agent-based Modeling of Markets using Multi-agent Reinforcement Learning

SUMITRA GANESH
(JP MORGAN)
Abstract

Agent-based models are an intuitive, interpretable way to model markets and give us a powerful mechanism to analyze counterfactual scenarios that might rarely occur in historical market data. However, building realistic agent-based models is challenging and requires that we (a) ensure that agent behaviors are realistic, and (b) calibrate the agent composition using real data. In this talk, we will present our work to build realistic agent-based models using a multi-agent reinforcement learning approach. Firstly, we show that we can learn a range of realistic behaviors for heterogeneous agents using a shared policy conditioned on agent parameters and analyze the game-theoretic implications of this approach. Secondly, we propose a new calibration algorithm (CALSHEQ) which can estimate the agent composition for which calibration targets are approximately matched, while simultaneously learning the shared policy for the agents. Our contributions make the building of realistic agent-based models more efficient and scalable.

 

Thu, 12 Nov 2020

16:00 - 17:00

On Detecting Spoofing Strategies in High-Frequency Trading

SAMUEL DRAPEAU
(Shanghai Jiao Tong University)
Abstract

The development of high frequency and algorithmic trading allowed to considerably reduce the bid ask spread by increasing liquidity in limit order books. Beyond the problem of optimal placement of market and limit orders, the possibility to cancel orders for free leaves room for price manipulations, one of such being spoofing. Detecting spoofing from a regulatory viewpoint is challenging due to the sheer amount of orders and difficulty to discriminate between legitimate and manipulative flows of orders. However, it is empirical evidence that volume imbalance reflecting offer and demand on both sides of the limit order book has an impact on subsequent price movements. Spoofers use this effect to artificially modify the imbalance by posting limit orders and then execute market orders at subsequent better prices while canceling at a high speed their previous limit orders. In this work we set up a model to determine where a spoofer would place its limit orders to maximize its gains as a function of the imbalance impact on the price movement. We study the solution of this non local optimization problem as a function of the imbalance. With this at hand, we calibrate on real data from TMX the imbalance impact (as a function of its depth) on the resulting price movement. Based on this calibration and theoretical results, we then provide some methods and numerical results as how to detect in real time some eventual spoofing behavior based on Wasserstein distances. Joint work with Tao Xuan (SJTU), Ling Lan (SJTU) and Andrew Day (Western University)
=====================================================================

Thu, 05 Nov 2020

16:00 - 17:00

A simple microstructural explanation of the concavity of price impact

Sergey Nadtochiy
(Illinois Institute of Technology)
Abstract

I will present a simple model of market microstructure which explains the concavity of price impact. In the proposed model, the local relationship between the order flow and the fundamental price (i.e. the local price impact) is linear, with a constant slope, which makes the model dynamically consistent. Nevertheless, the expected impact on midprice from a large sequence of co-directional trades is nonlinear and asymptotically concave. The main practical conclusion of the model is that, throughout a meta-order, the volumes at the best bid and ask prices change (on average) in favor of the executor. This conclusion, in turn, relies on two more concrete predictions of the model, one of which can be tested using publicly available market data and does not require the (difficult to obtain) information about meta-orders. I will present the theoretical results and will support them with the empirical analysis.

Thu, 22 Oct 2020

16:00 - 17:00

Optimal Execution with Stochastic Delay

Leandro Sanchez Betancourt
((Oxford University))
Abstract

We show how traders use immediate execution limit orders (IELOs) to liquidate a position when the time between a trade attempt and the outcome of the attempt is random, i.e., there is latency in the marketplace and latency is random. We frame our model as a delayed impulse control problem in which the trader controls the times and the price limit of the IELOs she sends to the exchange. The contribution of the paper is twofold: (i) Our paper is the first to study an optimal liquidation problem that accounts for random delays, price impact, and transaction costs. (ii) We introduce a new type of impulse control problem with stochastic delay, not previously studied in the literature. We characterise the value functions as the solution to a coupled system of a Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) and a partial differential equation. We use a Feynman-Kac type representation to reduce the system of coupled value functions to a non-standard HJBQVI, and we prove existence and uniqueness of this HJBQVI in a viscosity sense. Finally, we implement the latency-optimal strategy and compare it with three benchmarks:  (i)  optimal execution with deterministic latency, (ii) optimal execution with zero latency, (iii) time-weighted average price strategy. We show that when trading in the EUR/USD currency pair, the latency-optimal strategy outperforms the benchmarks between ten USD per million EUR traded and ninety USD per million EUR traded.

Thu, 15 Oct 2020

16:00 - 17:00

Applications of Optimal Transport on Pathspace: from robust pricing of American Options to joint SPX/VIX calibration.

JAN OBLOJ
(University of Oxford)
Abstract

We consider continuous time financial models with continuous paths, in a pathwise setting using functional Ito calculus. We look at applications of optimal transport duality in context of robust pricing and hedging and that of calibration. First, we explore exntesions of the discrete-time results in Aksamit et al. [Math. Fin. 29(3), 2019] to a continuous time setting. Second, we addresses the joint calibration problem of SPX options and VIX options or futures. We show that the problem can be formulated as a semimartingale optimal transport problem under a finite number of discrete constraints, in the spirit of [arXiv:1906.06478]. We introduce a PDE formulation along with its dual counterpart. The solution, a calibrated diffusion process, can be represented via the solutions of Hamilton--Jacobi--Bellman equations arising from the dual formulation. The method is tested on both simulated data and market data. Numerical examples show that the model can be accurately calibrated to SPX options, VIX options and VIX futures simultaneously.

Based on joint works with Ivan Guo, Gregoire Loeper, Shiyi Wang.
==============================================

Thu, 18 Jun 2020

16:00 - 17:00

Deep Neural Networks for Optimal Execution

LAURA LEAL
(Princeton)
Abstract


Abstract: We use a deep neural network to generate controllers for optimal trading on high frequency data. For the first time, a neural network learns the mapping between the preferences of the trader, i.e. risk aversion parameters, and the optimal controls. An important challenge in learning this mapping is that in intraday trading, trader's actions influence price dynamics in closed loop via the market impact. The exploration--exploitation tradeoff generated by the efficient execution is addressed by tuning the trader's preferences to ensure long enough trajectories are produced during the learning phase. The issue of scarcity of financial data is solved by transfer learning: the neural network is first trained on trajectories generated thanks to a Monte-Carlo scheme, leading to a good initialization before training on historical trajectories. Moreover, to answer to genuine requests of financial regulators on the explainability of machine learning generated controls, we project the obtained ``blackbox controls'' on the space usually spanned by the closed-form solution of the stylized optimal trading problem, leading to a transparent structure. For more realistic loss functions that have no closed-form solution, we show that the average distance between the generated controls and their explainable version remains small. This opens the door to the acceptance of ML-generated controls by financial regulators.
 

Thu, 04 Jun 2020

16:00 - 17:00

Multi-agent reinforcement learning: a mean-field perspective

Renyuan Xu
(University of Oxford)
Abstract

Multi-agent reinforcement learning (MARL) has enjoyed substantial successes in many applications including the game of Go, online Ad bidding systems, realtime resource allocation, and autonomous driving. Despite the empirical success of MARL, general theories behind MARL algorithms are less developed due to the intractability of interactions, complex information structure, and the curse of dimensionality. Instead of directly analyzing the multi-agent games, mean-field theory provides a powerful approach to approximate the games under various notions of equilibria. Moreover, the analytical feasible framework of mean-field theory leads to learning algorithms with theoretical guarantees. In this talk, we will demonstrate how mean-field theory can contribute to the simultaneous-learning-and-decision-making problems with unknown rewards and dynamics. 

To approximate Nash equilibrium, we first formulate a generalized mean-field game (MFG) and establish the existence and uniqueness of the MFG solution. Next we show the lack of stability in naive combination of the Q-learning algorithm and the three-step fixed-point approach in classical MFGs. We then propose both value-based and policy-based algorithms with smoothing and stabilizing techniques, and establish their convergence and complexity results. The numerical performance shows superior computational efficiency. This is based on joint work with Xin Guo (UC Berkeley), Anran Hu (UC Berkeley), and Junzi Zhang (Stanford).

If time allows, we will also discuss learning algorithms for multi-agent collaborative games using mean-field control. The key idea is to establish the time consistent property, i.e., the dynamic programming principle (DPP) on the lifted probability measure space. We then propose a kernel-based Q-learning algorithm. The convergence and complexity results are carried out accordingly. This is based on joint work with Haotian Gu, Xin Guo, and Xiaoli Wei (UC Berkeley).

Thu, 28 May 2020

16:00 - 17:00

Robust uncertainty sensitivity quantification

Johannes Wiesel
((Oxford University))
Abstract

 

We consider sensitivity of a generic stochastic optimization problem to model uncertainty. We take a non-parametric approach and capture model uncertainty using Wasserstein balls around the postulated model. We provide explicit formulae for the first order correction to both the value function and the optimizer and further extend our results to optimization under linear constraints.  We present applications to statistics, machine learning, mathematical finance and uncertainty quantification. In particular, we prove that LASSO leads to parameter shrinkage, propose measures to quantify robustness of neural networks to adversarial examples and compute sensitivities of optimised certainty equivalents in finance. We also propose extensions of this framework to a multiperiod setting. This talk is based on joint work with Daniel Bartl, Samuel Drapeau and Jan Obloj.

Thu, 21 May 2020

16:00 - 17:00

An Equilibrium Model of the Limit Order Book: a Mean-field Game approach

EunJung NOH
(Rutgers University)
Abstract

 

We study a continuous time equilibrium model of limit order book (LOB) in which the liquidity dynamics follows a non-local, reflected mean-field stochastic differential equation (SDE) with evolving intensity. We will see that the frontier of the LOB (e.g., the best ask price) is the value function of a mean-field stochastic control problem, as the limiting version of a Bertrand-type competition among the liquidity providers.
With a detailed analysis on the N-seller static Bertrand game, we formulate a continuous time limiting mean-field control problem of the representative seller.
We then validate the dynamic programming principle (DPP) and show that the value function is a viscosity solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation.
We argue that the value function can be used to obtain the equilibrium density function of the LOB. (Joint work with Jin Ma)

Thu, 14 May 2020

16:00 - 17:00

Dynamic default contagion: From Eisenberg--Noe to the Mean field

Andreas Sojmark
((Imperial College, London))
Abstract

 

Abstract: In this talk we start by introducing a simple model for interbank default contagion in the vein of the  seminal clearing frameworks of Eisenberg & Noe (2001) and Rogers & Veraart (2013). The key feature, and main novelty, consists in combining stochastic dynamics of the external assets with a simple but realistic balance sheet methodology for determining early defaults. After first developing the model for a finite number of banks, we present a natural way of passing to the mean field limit such that the original network structure (of the interbank obligations) is maintained in a meaningful way. Thus, we provide a clear connection between the more classical network-based literature on systemic risk and the recent approaches rooted in stochastic particle systems and mean field theory.

Thu, 07 May 2020

16:00 - 17:00

Deep reinforcement learning for market making in corporate bonds

Iuliia Manziuk
(Ecole Polytechnique)
Abstract

 

In corporate bond markets, which are mainly OTC markets, market makers play a central role by providing bid and ask prices for a large number of bonds to asset managers from all around the globe. Determining the optimal bid and ask quotes that a market maker should set for a given universe of bonds is a complex task. Useful models exist, most of them inspired by that of Avellaneda and Stoikov. These models describe the complex optimization problem faced by market makers: proposing bid and ask prices in an optimal way for making money out of the difference between bid and ask prices while mitigating the market risk associated with holding inventory. While most of the models only tackle one-asset market making, they can often be generalized to a multi-asset framework. However, the problem of solving numerically the equations characterizing the optimal bid and ask quotes is seldom tackled in the literature, especially in high dimension. In this paper, our goal is to propose a numerical method for approximating the optimal bid and ask quotes over a large universe of bonds in a model à la Avellaneda-Stoikov. Because we aim at considering a large universe of bonds, classical finite difference methods as those discussed in the literature cannot be used and we present therefore a discrete time method inspired by reinforcement learning techniques. More precisely, the approach we propose is a model-based actor-critic-like algorithm involving deep neural networks

Thu, 12 Mar 2020

16:00 - 17:00
L4

Regularity and stability of feedback relaxed controls

Yufei Zhang
Abstract

In this talk, we shall propose a relaxed control regularization with general exploration rewards to design robust feedback controls for multi-dimensional continuous-time stochastic exit time problems. We establish that the regularized control problem admits a H\”{o}lder continuous feedback control, and demonstrate that both the value function and the feedback control of the regularized control problem are Lipschitz stable with respect to parameter perturbations. Moreover, we show that a pre-computed feedback relaxed control has a robust performance in a perturbed system, and derive a first-order sensitivity equation for both the value function and optimal feedback relaxed control. These stability results provide a theoretical justification for recent reinforcement learning heuristics that including an exploration reward in the optimization objective leads to more robust decision making. We finally prove first-order monotone convergence of the value functions for relaxed control problems with vanishing exploration parameters, which subsequently enables us to construct the pure exploitation strategy of the original control problem based on the feedback relaxed controls. This is joint work with Christoph Reisinger (available at https://arxiv.org/abs/2001.03148).
 

Thu, 05 Mar 2020

16:00 - 17:00
L4

Calibrating financial models and extracting implied information using neural networks

Anastasia Borovykh
Abstract

In this talk we will discuss a data-driven approach based on neural networks (NN) for calibrating financial asset price models. Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the NN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained NN-solver on-line, aiming to find the weights of the neurons in the input layer. We will show how the same data-driven approach can be used to estimate the Black-Scholes implied volatility and dividend yield for American options in a fast and robust way. We then discuss the complexity of the optimization problem through an analysis of the loss surface of the neural network. We finally will present some numerical examples which show that neural networks can be an efficient and reliable technique for the calibration of financial assets and the extraction of implied information.

Thu, 27 Feb 2020

16:00 - 17:00
L4

Deep Reinforcement Learning for Trading

Zihao Zhang
(Oxford University Engineering)
Abstract


We adopt Deep Reinforcement Learning algorithms to design trading strategies for continuous futures contracts. Both discrete and continuous action spaces are considered and volatility scaling is incorporated to create reward functions which scale trade positions based on market volatility. We test our algorithms on the 50 most liquid futures contracts from 2011 to 2019, and investigate how performance varies across different asset classes including commodities, equity indices, fixed income and FX markets. We compare our algorithms against classical time series momentum strategies, and show that our method outperforms such baseline models, delivering positive profits despite heavy transaction costs. The experiments show that the proposed algorithms can follow large market trends without changing positions and can also scale down, or hold, through consolidation periods.
The full-length text is available at https://arxiv.org/abs/1911.10107.
 

Thu, 13 Feb 2020

16:00 - 17:00
L4

Network valuation under equity conversions

Christoph Siebenbrunner
(Oxford University)
Abstract

We build on the literature on financial contagion using models of cross-holdings of equity participations and debt in different seniority classes, and extend them to include bail-ins and contingent convertible debt instruments, two mechanisms of debt-to-equity conversion. We combine these with recently proposed methods of network valuation under stochastic external assets, allowing for the pricing of debt instruments in each seniority layer and the calculation of default probabilities. We show that there exist well-defined valuations for all financial assets cross-held within the system. The full model constitutes an extension of classic asset pricing models that accounts for cross-holdings of debt securities. Our contribution is to add convertible debt to this framework.

Thu, 06 Feb 2020

16:00 - 17:00
L4

Eigenvector overlaps of random matrices and financial applications

Jean Philippe Bouchaud
(CFM & Ecole Polytechnique)
Abstract

Whereas the spectral properties of random matrices has been the subject of numerous studies and is well understood, the statistical properties of the corresponding eigenvectors has only been investigated in the last few years. We will review several recent results and emphasize their importance for cleaning empirical covariance matrices, a subject of great importance for financial applications.

 

Thu, 30 Jan 2020

16:00 - 17:00
L4

Collateralized Networks

Samim Ghamami
Abstract

This paper studies the spread of losses and defaults in financial networks with two important features: collateral requirements and alternative contract termination rules in bankruptcy. When collateral is committed to a firm’s counterparties, a solvent firm may default if it lacks sufficient liquid assets to meet its payment obligations. Collateral requirements can thus increase defaults and payment shortfalls. Moreover, one firm may benefit from the failure of another if the failure frees collateral committed by the surviving firm, giving it additional resources to make other payments. Contract termination at default may also improve the ability of other firms to meet their obligations. As a consequence of these features, the timing of payments and collateral liquidation must be carefully specified, and establishing the existence of payments that clear the network becomes more complex. Using this framework, we study the consequences of illiquid collateral for the spread of losses through fire sales; we compare networks with and without selective contract termination; and we analyze the impact of alternative bankruptcy stay rules that limit the seizure of collateral at default. Under an upper bound on derivatives leverage, full termination reduces payment shortfalls compared with selective termination.

Thu, 16 Jan 2020

16:00 - 17:00
L4

PRICING OF COUNTERPARTY RISK AND FUNDING WITH CSA DISCOUNTING, PORTFOLIO EFFECTS AND INITIAL MARGIN.

Alessandro Gnoatto
(Universita degli studi di Verona)
Abstract


In this paper we extend the existing literature on xVA along three directions. First, we enhance current BSDE-based xVA frameworks to include initial margin by following the approach of Crépey (2015a) and Crépey (2015b). Next, we solve the consistency problem that arises when the front- office desk of the bank uses trade-specific discount curves that differ from the discount curve adopted by the xVA desk. Finally, we address the existence of multiple aggregation levels for contingent claims in the portfolio between the bank and the counterparty, providing suitable extensions of our proposed single-claim xVA framework. 

This is a joint work with: Francesca Biagini and Immacolata Oliva

Preprint available at: https://arxiv.org/abs/1905.11328

Thu, 28 Nov 2019

16:00 - 17:00
L4

The Systemic Implications of the Bail-In Design

Alissa Kleinnijenhuis
(Oxford University)
Abstract

The 2007-2008 financial crisis forced governments to choose between the unattractive alternatives of either bailing out a systemically important bank (SIBs) or having it fail in a disruptive manner. Bail-in has been put forward as the primary tool to resolve a failing bank, which would end the too-big-to-fail problem by letting stakeholders shoulder the losses, while minimising the calamitous systemic impact of a bank failure. Though the aptness of bail-in has been evinced in relatively minor idiosyncratic bank failures, its efficacy in maintaining stability in cases of large bank failures and episodes of system-wide crises remains to be practically tested. This paper investigates the financial stability implications of the bail-in design, in all these cases. We develop a multi-layered network model of the European financial system that captures the prevailing endogenous-amplification mechanisms: exposure loss contagion, overlapping portfolio contagion, funding contagion, bail-inable debt revaluations, and bail-inable debt runs. Our results reveal that financial stability hinges on a set of `primary' and `secondary' bail-in parameters, including the failure threshold, recapitalisation target, debt-to-equity conversion rate, loss absorption requirements, debt exclusions and bail-in-design certainty – and we uncover how. We also demonstrate that the systemic footprint of the bail-in design is not properly understood without the inclusion of multiple contagion mechanisms and non-banks. Our evidence fortunately suggests that the pivot for stability is in the hands of policymakers. It also suggests, however, that the current bail-in design might be in the regime of instability.