On stationary motions of Prandtl-Eyring fluids in 2D
Abstract
We prove the existence of weak solutions to steady Navier Stokes equations
$$\text{div}\, \sigma+f=\nabla\pi+(\nabla u)u.$$
Here $u:\mathbb{R}^2\supset \Omega\rightarrow \mathbb{R}^2$ denotes
the velocity field satisfying $\text{div}\, u=0$,
$f:\Omega\rightarrow\mathbb{R}^2$ and
$\pi:\Omega\rightarrow\mathbb{R}$ are external volume force and
pressure, respectively. In order to model the behavior of
Prandtl-Eyring fluids we assume
$$\sigma= DW(\varepsilon (u)),\quad W(\varepsilon)=|\varepsilon|\log
(1+|\varepsilon|).$$
A crucial tool in our approach is a modified Lipschitz truncation
preserving the divergence of a given function.