Forthcoming events in this series


Tue, 21 Oct 2025

16:00 - 17:00
L6

Randomness in the Spectrum of the Laplacian: From Flat Tori to Hyperbolic Surfaces of High Genus

Prof. Jens Marklof
(University of Bristol )
Abstract

I will report on recent progress on influential conjectures from the 1970s and 1980s (Berry-Tabor, Bohigas-Giannoni-Schmit), which suggest that the spectral statistics of the Laplace-Beltrami operator on a given compact Riemannian manifold should be described either by a Poisson point process or by a random matrix ensemble, depending on whether the  geodesic flow is integrable or “chaotic”. This talk will straddle aspects of analysis, geometry, probability, number theory and ergodic theory, and should be accessible to a broad audience. The two most recent results presented in this lecture were obtained in collaboration with Laura Monk and with Wooyeon Kim and Matthew Welsh. 

Tue, 21 Oct 2025

14:00 - 15:00
L3

Optimal control of the Dyson equation and large deviations for Hermitian random matrices

Prof Panagiotis E. Souganidis
(University of Chicago)
Abstract

Using novel arguments as well as techniques developed over the last  twenty years to study mean field games, in this paper (i) we investigate the optimal control of the Dyson equation, which is the mean field equation for the so-called Dyson Brownian motion, that is, the stochastic particle system satisfied by the eigenvalues of large random matrices, (ii) we establish the well-posedness of the resulting infinite dimensional Hamilton-Jacobi equation, 
(iii) we provide a complete and direct proof for the large deviations for the spectrum of large random matrices, and (iv) we study the asymptotic behavior of the transition probabilities of the Dyson Brownian motion.  Joint work with Charles Bertucci and Pierre-Louis Lions.

Tue, 30 Sep 2025

15:00 - 16:00
L6

Dimension liftings for quantum computation of partial differential equations and related problems

Prof Shi Jin
(Shanghai Jiao Tong University)
Abstract

Quantum computers are designed based on quantum mechanics principle, they are most suitable to solve the Schrodinger equation, and linear PDEs (and ODEs) evolved by unitary operators.  It is important to  to explore whether other problems in scientific computing, such as ODEs, PDEs, and  linear algebra that arise in both classical and quantum systems which are not unitary evolution,  can be handled by quantum computers.  

We will present a systematic way to develop quantum simulation algorithms for general differential equations. Our basic framework is dimension lifting, that transfers non-autonomous ODEs/PDEs systems to autonomous ones, nonlinear PDEs to linear ones, and linear ones to Schrodinger type PDEs—coined “Schrodingerization”—with uniform evolutions. Our formulation allows both qubit and qumode (continuous-variable) formulations, and their hybridizations, and provides the foundation for analog quantum computing which are easier to realize in the near term. We will also discuss  dimension lifting techniques for quantum simulation of stochastic DEs and PDEs with fractional derivatives. 

Tue, 09 Sep 2025
16:00
L5

Continua of Steadily Rotating Stars

Prof. Walter Strauss
(Brown University)
Abstract
I will present a survey of some recent mathematical work on rotating stars that is joint with Yilun Wu.   The rotating star is modeled as a compressible fluid subject only to gravity. Under certain conditions there exists a large family of solutions on which the supports of the stars become unbounded. The stars have a fixed mass and they rotate around a fixed axis at a speed that varies along the family.  I will also mention a more elaborate model, joint with Yilun Wu and Juhi Jang, that permits the entropy to be variable.


 

Tue, 09 Sep 2025

15:00 - 16:00
L5

 Global-in-Time Well-Posedness of Classical Solutions to the Vacuum Free Boundary Problem for the Viscous Saint-Venant System with Large Data

Professor Shengguo Zhu
(Shanghai Jiao Tong University China)
Abstract

We talk about the global-in-time well-posedness of classical solutions to the vacuum free boundary problem of the 1D viscous Saint-Venant system for laminar shallow water with large data. Since the depth of the fluid vanishes on the moving boundary, the momentum equations become degenerate both in the time evolution and spatial dissipation, which may lead to singularities for the derivatives of the velocity of the fluid and then makes it challenging to study classical solutions. By exploiting the intrinsic degenerate-singular structures of the viscous Saint-Venant system, we are able to identify two classes of admissible initial depth profile and obtain the global well-posedness theory here: the first class of the initial depth profile satisfies the well-known BD entropy condition; the second class of the initial depth profile satisfies the well-known physical vacuum boundary condition, but violates the BD entropy condition. One of the key ingredients of the analysis here is to establish some new degenerate weighted estimates for the effective velocity via its transport properties, which do not require the initial BD entropy condition or the physical vacuum boundary condition. These new estimates enable one to obtain the upper bound for the first order spatial derivative of the flow map. Then the global-in-time regularity uniformly up to the vacuum boundary can be obtained by carrying out a series of singular or degenerate weighted energy estimates carefully designed for this system.

Tue, 02 Sep 2025
15:00
L4

On a classification of steady solutions to two-dimensional Euler equations

Changfeng Gui
(University of Macau)
Abstract
In this talk,  I shall  provide a classification of steady solutions to two-dimensional incompressible Euler equations in terms of the set of flow angles. The first main result asserts that the set of flow angles of any bounded steady flow in the whole plane must be the whole circle unless the flow is a parallel shear flow. In an infinitely long horizontal strip or the upper half-plane supplemented with slip boundary conditions, besides the two types of flows appeared in the whole space case, there exists an additional class of steady flows for which the set of flow angles is either the upper or lower closed semicircles. This type of flows is proved to be the class of non-shear flows that have the least total curvature.  A  further classification  of this type of solutions will also be  discussed.    As consequences, we obtain Liouville-type theorems for two-dimensional semilinear elliptic equations with only bounded and measurable nonlinearity, and the structural stability of shear flows whose all stagnation points are not inflection points, including Poiseuille flow as a special case. Our proof relies on the analysis of some quantities related to the curvature of the streamlines.
 
This  talk is  based on  joint works with David Ruiz,  Chunjing Xie and  Huan Xu.
Tue, 02 Sep 2025
14:00
L4

Uniqueness of critical points of the second Neumann eigenfunctions on triangles

Ruofei Yao
(South China University of Technology)
Abstract

The hot spots conjecture, proposed by Rauch in 1974, asserts that the second Neumann eigenfunction of the Laplacian achieves its global maximum (the hottest point) exclusively on the boundary of the domain. Notably, for triangular domains, the absence of interior critical points was recently established by Judge and Mondal in [Ann. Math., 2022]. Nevertheless, several important questions about the second Neumann eigenfunction in triangles remain open. In this talk, we address issues such as: (1) the uniqueness of non-vertex critical points; (2) the necessary and sufficient conditions for the existence of non-vertex critical points; (3) the precise location of the global extrema; (4) the position of the nodal line; among others. Our results not only confirm both the original theorem and Conjecture 13.6 proposed by Judge and Mondal in [Ann. Math., 2020], but also accomplish a key objective outlined in the Polymath 7 research thread 1 led by Terence Tao. Furthermore, we resolve an eigenvalue inequality conjectured by Siudeja [Proc. Amer. Math. Soc., 2016] concerning the ordering of mixed Dirichlet–Neumann Laplacian eigenvalues for triangles. Our approach employs the continuity method via domain deformation. 

 

Tue, 17 Jun 2025
16:00
L5

The emergence of entropy solutions for Euler alignment equations

Eitan Tadmor
(University of Maryland and Fondation Sciences Mathematiques de Paris LJLL, Sorbonne University)
Abstract

The hydrodynamic description for emergent behavior of interacting agents is governed by Euler alignment equations, driven by different protocols of pairwise communication kernels. A main question of interest is how short- vs. long-range interactions dictate the large-crowd, long-time dynamics. 

The equations lack closure for the pressure away thermal equilibrium. We identify a distinctive feature of Euler alignment -- a reversed direction of entropy. We discuss the role of a reversed entropy inequality in selecting mono-kinetic closure for emergence of strong solutions, prove the existence of such solutions, and characterize their related invariants which extend the 1-D notion of an “e” quantity.

Fri, 20 May 2022

16:00 - 18:30
L1

Guest Speakers Seminar

Prof. Luis Caffarelli and Prof. Irene Gamba
(University of Texas at Austin)
Further Information

Event Timings:

16:00 – 16:10 Refreshments (Served in the North Mezzanine)

16:10 – 17:10  Talk by Prof. Luis Caffarelli

17:10 – 17:30 Refreshments Break (20mins - Served in the North Mezzanine)

17:30 – 18:30 Talk by Prof Irene Martínez Gamba

Each talk will have a Q&A afterwards.

Register your interest HERE

Abstract

 

 

Title: Topics on regularity theory for fully non-linear integro-differential equations

Abstract: We will focus on local and non-local Monge Ampere type equations, equations with deforming kernels and convex envelopes of functions with optimal special conditions. We discuss global solutions and their regularity properties.

 

Title: Quasilinear Conservative Collisional Transport in Kinetic Mean Field models

AbstractWe shall focus the on the interplay of nonlinear analysis  and numerical approximations to mean field models in particle physics where kinetic transport flows in momentum are strongly nonlinearly  modified by macroscopic quantities in classical or spectral density spaces. Two noteworthy models arise: the classical Fokker-Plank Landau dynamics as a low magnetized plasma regimes in the modeling of perturbative non-local high order terms. The other one corresponds to perturbation under strongly magnetized dynamics for fast electrons  in momentum space  give raise to a coupled system of classical kinetic diffusion processes described by the balance equations for electron probability density functions (electron pdf) coupled to the time dynamics on spectral energy waves  (quasi-particles) in a quantum process of their resonant interaction. Both models are rather different, yet there are derived form the Liouville-Maxwell system under different scaling. Analytical tools and some numerical  simulations show a presence of  strong hot tail anisotropy  formation taking the stationary states away from Classical equilibrium solutions stabilization for the iteration in a three dimensional cylindrical model. The semi-discrete schemes preserves the total system mass, momentum and energy, which are enforced by the numerical scheme. Error estimates can be obtained as well.

Work in collaboration with Clark Pennie and Kun Huang

Fri, 29 Nov 2019
11:30
L5

Oscillations and Spirals in Two Problems of Global Analysis

Siran Li
(Rice University)
Abstract

We present our works on two problems in global analysis (i.e.,analysis on manifolds): One concerns the compactness of the space of smooth $d$-dimensional immersed hypersurfaces with uniformly $L^d$-bounded second fundamental forms, and the other concerns the validity of W^{2,p}$-elliptic estimates for the Laplace--Beltrami operator on open manifolds. We construct explicit counterexamples to both problems. The onstructions involve rapid oscillations and wild spirals, with motivations derived from physical phenomena.

Fri, 14 Sep 2018

10:00 - 11:00
L3

Deterministic particle approximation for local and nonlocal transport equations

Marco Di Francesco
(University of L' Aquila)
Abstract

The derivation of first-order nonlinear transport PDEs via interacting particles subject only to deterministic forces is crucial in the socio-biological sciences and in the real world applications (e.g. vehicular traffic, pedestrian movements), as it provides a rigorous justification to a "continuum" description in situations more naturally described by a discrete approach. This talk will collect recent results on the derivation of entropy solutions to scalar conservation laws (arising e.g. in traffic flow) as many particle limits of "follow-the-leader"-type ODEs, including extensions to the case with Dirichlet boundary conditions and to the Hughes model for pedestrian movements (the results involve S. Fagioli, M. D. Rosini, G. Russo). I will then describe a recent extension of this approach to nonlocal transport equations with a "nonlinear mobility" modelling prevention of overcrowding for high densities (in collaboration with S. Fagioli and E. Radici). 

Fri, 10 Aug 2018

11:00 - 12:00
L6

Behaviors of Navier-Stokes(Euler)-Fokker-Planck equations

Hailiang Li
(Capital Normal University)
Abstract

We consider the behaviors of global solutions to the initial value problems for the multi-dimensional Navier-Stokes(Euler)-Fokker-Planck equations. It is shown that due to the micro-macro coupling effects of relaxation damping type, the sound wave type propagation of this NSFP or EFP system for two-phase fluids is observed with the wave speed determined by the two-phase fluids. This phenomena can not be observed for the pure Fokker-Planck equation and the Navier-Stokes(Euler) equation with frictional damping.

Thu, 02 Aug 2018
12:00
C6

A mathematical theory for the construction of the turbulent two point correlation functions

James Glimm
(Stony Brook University)
Abstract

We solve the construction of the turbulent two point functions in the following manner:

A mathematical theory, based on a few physical laws and principles, determines the construction of the turbulent two point function as the expectation value of a statistically defined random field. The random field is realized via an infinite induction, each step of which is given in closed form.

Some version of such models have been known to physicists for some 25 years. Our improvements are two fold:

  1. Some details in the reasoning appear to be missing and are added here.
  2. The mathematical nature of the algorithm, difficult to discern within the physics presentation, is more clearly isolated.

Because the construction is complex, usable approximations, known as surrogate models, have also been developed.

The importance of these results lies in the use of the two point function to improve on the subgrid models of Lecture I.

We also explain limitations. For the latter, we look at the deflagration to detonation transition within a type Ia supernova and decide that a completely different methodology is recommended. We propose to embed multifractal ideas within a physics simulation package, rather than attempting to embed the complex formalism of turbulent deflagration into the single fluid incompressible model of the two point function. Thus the physics based simulation model becomes its own surrogate turbulence model.

Thu, 02 Aug 2018

11:00 - 12:00
C6

Turbulence models and convergence rates

James Glimm
(Stony Brook University)
Abstract

We discuss three methods for the simulation of turbulent fluids. The issue we address is not the important issue of numerical algorithms, but the even more basic question of the equations to be solved, otherwise known as the turbulence model.  These equations are not simply the Navier-Stokes equations, but have extra, turbulence related terms, related to turbulent viscosity, turbulent diffusion and turbulent thermal conductivity. The extra terms are not “standard textbook” physics, but are hypothesized based on physical reasoning. Here we are concerned with these extra terms.

The many models, divided into broad classes, differ greatly in

Dependence on data
Complexity
Purpose and usage

For this reason, each of the classes of models has its own rationale and domain of usage.

We survey the landscape of turbulence models.

Given a turbulence model, we ask: what is the nature of convergence that a numerical algorithm should strive for? The answer to this question lies in an existence theory for the Euler equation based on the Kolmogorov 1941 turbulent scaling law, taken as a hypothesis (joint work with G-Q Chen).

Wed, 01 Aug 2018

12:00 - 13:00
C6

Bressan’s Conjecture on compactness of flow for BV vector fields

Stefano Bianchini
(SISSA-ISAS)
Abstract

When studying a systems of conservation laws in several space dimensions, A. Bressan conjectured that the flows $X^n(t)$ generated by a smooth vector fields $\mathbf b^n(t,x)$,
\[
\frac{d}{dt} X^n(t,y) = \mathbf b^n(t,X(t,y)),
\]
are compact in $L^1(I\!\!R^d)$ for all $t \in [0,T]$ if $\mathbf b^n \in L^\infty \cap \mathrm{BV}((0,t) \times I\!\!R^d)$ and they are nearly incompressible, i.e.
\[
\frac{1}{C} \leq \det(\nabla_y X(t,y)) \leq C
\]
for some constant $C$. This conjecture is implied by the uniqueness of the solution to the linear transport equation
\[
\partial_t \rho + \mathrm{div}_x(\rho \mathbf b) = 0, \quad \rho \in L^\infty((0,T) \times I\!\!R^d),
\]
and it is the natural extension of a series of results concerning vector fields $\mathbf b(t,x)$ with Sobolev regularity.

We will give a general framework to approach the uniqueness problem for the linear transport equation and to prove Bressan's conjecture.

Mon, 23 Jul 2018

14:00 - 16:00
L6

Shock Refection Problem: Existence and Uniqueness of Solutions

Mikhail Feldman
(University of Wisconsin)
Abstract

We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections. Then we describe recent results on existence and uniqueness of regular reflection solutions for potential flow equation, and discuss some techniques involved in the proof. The approach is to reduce the shock reflection problem to a free boundary problem, and prove existence and uniqueness by a version of method of continuity. This involves apriori estimates of solutions in the elliptic region of the equation of mixed type, with ellipticity degenerating on some part of the boundary. For the proof of uniqueness, an important property of solutions is convexity of the free boundary. We will also discuss some open problems.

This talk is based on joint works with G.-Q. Chen and W. Xiang.

 

Wed, 04 Apr 2018

15:00 - 16:00
L5

Schauder theory for uniformly degenerate elliptic equations

Qing Han
(University of Notre Dame)
Abstract

The uniformly degenerate elliptic equation is a special class of degenerate elliptic equations. It appears frequently in many important geometric problems. For example, the Beltrami-Laplace operator on conformally compact manifolds is uniformly degenerate elliptic, and the minimal surface equation in the hyperbolic space is also uniformly degenerate elliptic. In this talk, we discuss the global regularity for this class of equations in the classical Holder spaces. We also discuss some applications.

Tue, 01 Aug 2017

15:30 - 16:30
L5

A turbulent State for Electrical Signals in the Heart: Treatments & Mechanisms

James Glimm
(Stony Brook University)
Abstract

Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.

The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.

The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.

In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.

The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.

 

Tue, 01 Aug 2017

14:00 - 15:00
L5

Reaction Diffusion Equations and Electrical Signals in the Heart

James Glimm
(Stony Brook University)
Abstract

Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.

The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.

As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.

The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.

In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.

The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.

In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.

Mon, 01 Jun 2015

10:00 - 11:00
L5

Examples of 2d incompressible flows and certain model equations

Vladimir Sverak
(University of Minnesota)
Abstract

We will discuss 2d Euler and Boussinesq (incompressible) flows related to a possible boundary blow-up scenario for the 3d axi-symmetric case suggested by G. Luo and T. Hou, together with some easier model problems relevant for that situation.

Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Tue, 03 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 1)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Wed, 21 May 2014

15:00 - 16:00
L5

Pointwise estimates for degenerate elliptic systems

Dr Dominic Breit
(LMU Munich)
Abstract

We consider degenerate elliptic systems like the p-Laplacian  system with p>1 and zero boundary data. The r.h.s. is given in  divergence from div F. We prove a pointwise estimate (in terms of the  sharp maximal function) bounding the gradient of the solution via the  function F. This recovers several known results about local regularity  estimates in L^q, BMO and C^a. Our pointwise inequality extends also  to boundary points. So these  regularity estimates hold globally as  well. The global estimates in BMO and C^a are new.

Fri, 02 May 2014

17:00 - 18:00
L5

Relaxation in BV under non-standard growth conditions

Dr Parth Soneji
(Ludwig Maximilians Universitat)
Abstract

Morrey's lower semicontinuity theorem for quasiconvex integrands is a classical result that establishes the existence of minimisers to variational problems by the Direct Method, provided the integrand satisfies "standard" growth conditions (i.e. when the growth and coercivity exponents match). This theorem has more recently been refined to consider convergence in Sobolev Spaces below the growth exponent of the integrand: such results can be used to show existence of solutions to a "Relaxed minimisation problem" when we have "non-standard'" growth conditions.

When the integrand satisfies linear coercivity conditions, it is much more useful to consider the space of functions of Bounded Variation, which has better compactness properties than $W^{1,1}$. We review the key results in the standard growth case, before giving an overview of recent results that we have obtained in the non-standard case. We find that new techniques and ideas are required in this setting, which in fact provide us with some interesting (and perhaps unexpected) corollaries on the general nature of quasiconvex functions. 

Fri, 07 Mar 2014

17:00 - 18:00
L3

Icosahedral clusters: the stem cell of the solid state?

Jean Taylor
(Rutgers University)
Abstract

Recent experimental work has determined the atomic structure of a quasicrystalline Cd-Yb alloy. It highlights the elegant role of polyhedra with icosahedral symmetry. Other work suggests that while chunks of periodic crystals and disordered glass predominate in the solid state, there are many hints of icosahedral clusters. This talk is based on a recent Mathematical Intelligencer article on quasicrystals with Marjorie Senechal.


The seminar will be followed by a drinks reception and forms part of a longer PDE and CoV related Workshop.


To register for the seminar and drinks reception go to http://doodle.com/acw6bbsp9dt5bcwb

Wed, 29 Jan 2014

15:00 - 16:00
L6

Existence and regularity results for the heat flow of higher dimensional H-systems

Professor Chiara Leone
(Universita Degli Studi 'Frederic II' di Napoli)
Abstract

In this talk we will show the existence  of a regular "small" weak solution to the flow of the higher dimensional H-systems with initial-boundary conditions. We also analyze its time asymptotic bahavior and we give a stability result.

Fri, 17 Jan 2014

14:00 - 15:30
L3

The positive Jacobian constraint in elasticity theory and orientation-preserving Young measures

Filip Rindler
(University of Warwick)
Abstract

In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.

In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.

Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.

Thu, 16 Jan 2014

16:00 - 17:30
L3

Topology of Sobolev spaces and Local minimizers

Ali Taheri
(University of Sussex)
Abstract

Attempting to extend the methods of critical point theory (e.g., those of Morse theory and Lusternik-Schnirelman theory) to the study of strong local minimizers of integral functionals of the calculus of variations I will describe how the obstruction method of algebraic topology can be successfully used to tackle the enumeration problem for various homotopy classes of maps in Sobolev spaces and that how this will result in precise lower bounds on the number of such local minimizers in terms of convenient topological invariants of the underlying spaces. I will then move on to dicussing variants as well as applications of the result to some classes of geometric nonlinear PDEs in particular problems in nonlinear elasticity.

Thu, 16 Jan 2014

14:00 - 15:30
L3

Functionals defined on 1-rectifiable sets and the application to the theory of dislocations

Adriana Garroni
(Universita’ di Roma)
Abstract

In the theory of dislocations one is naturally led to consider energies of “line tension” type concentrated on lines. These lines may have a local vector-valued multiplicity, and the energy may depend on this multiplicity and on the orientation of the line. In the two-dimensional case this problem reduces to the classical problem of energies defined on partitions which arises in the sharp-interface models for phase transitions. 

I will introduce the main results concerning functionals in the calculus of variations that are defined on partitions. Such partitions are nicely characterized as level sets of function with bounded variations with a discrete set of values.  In this setting I will recall the characterization of the lower semicontinuity and the relaxation formula, which gives rise to the notion of BV-ellipticity. The case of dislocations in a three-dimensional crystal requires a formulation in the setting of 1-rectifiable currents with multiplicity in a lattice. In this context I will describe the main results and some examples of interest, in which relaxation is necessary and can be characterized.

Wed, 27 Nov 2013

14:00 - 15:00
L4

The existence theorem for the steady Navier--Stokes equations in exterior axially symmetric domains

Professor Mikhail Korobkov
(Novosibirsk State University)
Abstract

We study the nonhomogeneous boundary value problem for Navier--Stokes equations of steady motion of a viscous incompressible fluid in  a plane or spatial exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric case (without any restrictions on fluxes, etc.)  No restriction on the size of fluxes are required. This is a joint result with K.Pileckas and R.Russo.

Wed, 07 Aug 2013

12:00 - 13:00
Gibson Grd floor SR

An Initial-Boundary Value Problem for the Fully-Coupled Navier-Stokes/Q-Tensor System

Yuning Liu
(University of Regensburg)
Abstract

We will present in this lecture the global existence of weak solutions and the local existence and uniqueness of strong-in-time solutions for the fully-coupled Navier-Stokes/Q-tensor system on a bounded domain $\O\subset\mathbb{R}^d$ ($d=2,3$) with inhomogenerous Dirichlet and Neumann or mixed boundary conditions. Our result is valid for any physical parameter $\xi$ and we consider the Navier-Stokes equations with a general (but smooth) viscosity coefficient.

Fri, 14 Jun 2013

12:00 - 13:00
Gibson Grd floor SR

On scale-invariant solutions of the Navier-Stokes equations

Vladimir Sverak
(University of Minnesota)
Abstract

The optimal function spaces for the local-in-time well-posedness theory of the Navier-Stokes equations are closely related to the scaling symmetry of the equations. This might appear to be tied to particular methods used in the proofs, but in this talk we will raise the possibility that the equations are actually ill-posed for finite-energy initial data just at the borderline of some of the most benign scale-invariant spaces. This is related to debates about the adequacy of the Leray-Hopf weak solutions for predicting the time evolution of the system. (Joint work with Hao Jia.)

Fri, 31 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 4 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 24 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 3 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 17 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 2 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 10 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 1 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Tue, 07 May 2013
12:00
Gibson 1st Floor SR

Higher dimensional isometric embedding

Marshall Slemrod
(University of Wisconsin)
Abstract

I will present new results on local smooth embedding of Riemannian manifolds of dimension $n$ into Euclidean space of dimension $n(n+1)/2$.  This part of ac joint project with G-Q Chen ( OxPDE), Jeanne Clelland ( Colorado), Dehua Wang ( Pittsburgh), and Deane Yang ( Poly-NYU).

Mon, 29 Apr 2013
14:00
Gibson 1st Floor SR

nonlinear evolution systems and Green's function

Weike Wang
(Shanghai Jiao Tong University)
Abstract

In this talk, we will introduce how to apply Green's function method to get  pointwise estimates for solutions of the Cauchy problem of nonlinear evolution equations with dissipative  structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will  introduce some recent results and give brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.

Tue, 27 Nov 2012

17:00 - 18:00
Gibson 1st Floor SR

Relaxation of a Generalized Willmore Functional

Simon Masnou
(Universit&eacute; Lyon 1)
Abstract

Several shape optimization problems, e.g. in image processing, biology, or discrete geometry, involve the Willmore functional, which is for a surface the integrated squared mean curvature. Due to its singularity, minimizing this functional under constraints is a delicate issue. More precisely, it is difficult to characterize precisely the structure of the minimizers and to provide an explicit

formulation of their energy. In a joint work with Giacomo Nardi (Paris-Dauphine), we have studied an "integrated" version of the Willmore functional, i.e. a version defined for functions and not only for sets. In this talk, I will describe the tools, based on Young measures and varifolds, that we have introduced to address the relaxation issue. I will also discuss some connections with the phase-field numerical approximation of the Willmore flow, that we have investigated with Elie Bretin (Lyon) and Edouard Oudet (Grenoble).

Fri, 16 Nov 2012

12:30 - 13:30
Gibson 1st Floor SR

Energy driven pattern formation in a non-local Ginzburg-Landau/Cahn-Hilliard energy

Dorian Goldman
(New York University)
Abstract

Notice that the time is 12:30, not 12:00!

\newline

\vskip\baselineskip

The following is joint work with Sylvia Serfaty and Cyrill Muratov.

We study the asymptotic behavior of the screened sharp interface

Ohta-Kawasaki energy in dimension 2 using the framework of Γ-convergence.

In that model, two phases appear, and they interact via a nonlocal Coulomb

type energy. We focus on the regime where one of the phases has very small

volume fraction, thus creating ``droplets" of that phase in a sea of the

other phase. We consider perturbations to the critical volume fraction

where droplets first appear, show the number of droplets increases

monotonically with respect to the perturbation factor, and describe their

arrangement in all regimes, whether their number is bounded or unbounded.

When their number is unbounded, the most interesting case we compute the

Γ limit of the `zeroth' order energy and yield averaged information for

almost minimizers, namely that the density of droplets should be uniform.

We then go to the next order, and derive a next order Γ-limit energy,

which is exactly the ``Coulombian renormalized energy W" introduced in the

work of Sandier/Serfaty, and obtained there as a limiting interaction

energy for vortices in Ginzburg-Landau. The derivation is based on their

abstract scheme, that serves to obtain lower bounds for 2-scale energies

and express them through some probabilities on patterns via the

multiparameter ergodic theorem. Without thus appealing at all to the

Euler-Lagrange equation, we establish here for all configurations which

have ``almost minimal energy," the asymptotic roundness and radius of the

droplets as done by Muratov, and the fact that they asymptotically shrink

to points whose arrangement should minimize the renormalized energy W, in

some averaged sense. This leads to expecting to see hexagonal lattices of

droplets.

Tue, 13 Nov 2012

17:00 - 18:00
Gibson 1st Floor SR

The formation of shocks for the classical compressible Euler equations

Miao Shuang (with D. Christodoulou)
(Chinese Academy of Science & ETH Zurich)
Abstract

In this talk I shall discuss about the classical compressible Euler equations in three

space dimensions for a perfect fluid with an arbitrary equation of state.

We considered initial data which outside a sphere coincide with the data corresponding

to a constant state, we established theorems which gave a complete description of the

maximal development. In particular, we showed that the boundary of the domain of the

maximal development has a singular part where the inverse density of the wave fronts

vanishes, signaling shock formation.

Wed, 19 Sep 2012

12:00 - 13:00
Gibson 1st Floor SR

Initial-boundary value problems for systems of conservation laws: viscous approximations and limit analysis

Laura Spinolo
(IMATI-CNR Pavia)
Abstract

I will be concerned with initial-boundary value problems for systems of conservation laws in one space variable. First, I will go over some of the most relevant features of these problems. In particular, I will stress that different viscous approximation lead, in general, to different limits.

Next, I will discuss possible ways of characterizing the limit of a given viscous approximation. Also, I will establish a uniqueness criterion that allows to conclude that the limit of a self-similar approximation introduced by Dafermos et al. actually coincide with the limit of the physical viscous approximation. Finally, if time allows I will mention consequences on the design of numerical schemes. The talk will be based on joint works with S. Bianchini, C. Christoforou and S. Mishra.

Mon, 06 Aug 2012

17:00 - 18:00
Gibson 1st Floor SR

Continuum Surface Energy from a Lattice Model

Phoebus Rosakis
(University of Crete)
Abstract

The energy of a deformed crystal is calculated in the context of a central force lattice model in two dimensions. When the crystal shape is a lattice polygon, it is shown that the energy equals the bulk elastic energy, plus the boundary integral of a surface energy density, plus the sum over the vertices of a corner energy function. This is an exact result when the interatomic potential has finite range; for an infinite-range potential it is asymptotically valid as the lattice parameter tends to zero. The surface energy density is obtained explicitly as a function of the deformation gradient and boundary normal. The corner energy is found as an explicit function of the deformation gradient and the normals of the two facets meeting at the corner. A new bond counting approach is used, which reduces the problem to certain lattice point problems of number theory. The approach is then extended to more general convex regions with possibly curved boundary. The resulting surface energy density depends on the unit normal in a striking way. It is continuous at irrational directions, discontinuous at rational ones and nowhere differentiable. The method also yields an explicit interfacial energy for twin and phase boundaries.

Wed, 01 Aug 2012

15:00 - 16:00
Gibson 1st Floor SR

Semipositone Problems on Exterior Domains

Ratnasingham Shivaji
(University of North Carolina at Greensboro)
Abstract

\[

%\large

We study nonnegative radial solutions to the problem

\begin{equation*}

\left\{

\begin{split}

-\Delta u = \lambda K(\left|x \right|) f(u), \quad x \in \Omega

\\u = 0 \quad \qquad \quad \qquad \mbox{if } \left|x \right| = r_0

\\u \rightarrow0 \quad \qquad \quad \qquad \mbox{as } \left|x \right|\rightarrow\infty,

\end{split} \right.

\end{equation*}

where $\lambda$ is a positive parameter, $\Delta u=\mbox{div} \big(\nabla u\big)$ is the Laplacian of $u$,

$\Omega=\{x\in\ \mathbb{R}^{n}; n \textgreater 2, \left|x \right| \textgreater r_0\}$ and $K$ belongs to a class of functions such that $\lim_{r\rightarrow \infty}K(r)=0$. For classes of nonlinearities $f$ that are negative at the origin and sublinear at $\infty$ we discuss existence and uniqueness results when $\lambda$ is large.

\]

Tue, 05 Jun 2012

12:30 - 13:30
Gibson 1st Floor SR

Solenoidal Lipschitz truncation for parabolic PDEs

Dominic Breit
(Universität München)
Abstract
We consider functions $u\in L^\infty(0,T;L^2({B}))\cap L^p(0,T;W^{1,p}({B}))$ where $p\in(1,\infty)$, $T$ is positive and ${B}\subset\mathbb R^d$ bounded. Solutions to non-linear evolutionary PDE's typically belong to these spaces. Many applications require an approximation $u_\lambda$ of $u$ which is Lipschitz-continous and coincides with $u$ on a large set. For problems arising in fluid mechanics one needs to work with functions which are divergence-free thus we construct a function $u_\lambda\in L^\infty(0,T;W^{1,\mathrm{BMO}}({B}))$ which is in addition to the properties from the known truncation methods solenoidal. As an application we revisit the existence proof for non-stationary generalized Newtonian fluids. Since $\mathrm{div}\,u_\lambda=0$ we can completely avoid the appearance of the pressure term and the proof can be heavily simplified.
Mon, 12 Mar 2012
12:30
Gibson 1st Floor SR

Computational modeling in high-frequency MEMS resonator design

Sanjay Govindjee
(University of California)
Abstract

In the operation of high frequency resonators in micro electromechanical systems (MEMS)there is a strong need to be able to accurately determine the energy loss rates or alternativelythe quality of the resonance. The resonance quality is directly related to a designer’s abilityto assemble high fidelity system response for signal filtering, for example. This hasimplications on robustness and quality of electronic communication and also stronglyinfluences overall rates of power consumption in such devices – i.e. battery life. Pastdesign work was highly focused on the design of single resonators; this arena of work hasnow given way to active efforts at the design and construction of arrays of coupledresonators. The behavior of such systems in the laboratory shows un-necessarily largespread in operational characteristics, which are thought to be the result of manufacturingvariations. However, such statements are difficult to prove due to a lack of availablemethods for predicting resonator damping – even the single resonator problem is difficult.The physical problem requires the modeling of the behavior of a resonant structure (or setof structures) supported by an elastic half-space. The half-space (chip) serves as a physicalsupport for the structure but also as a path for energy loss. Other loss mechanisms can ofcourse be important but in the regime of interest for us, loss of energy through theanchoring support of the structure to the chip is the dominant effect.

The construction of a basic discretized model of such a system leads to a system ofequations with complex-symmetric (not Hermitian) structure. The complex-symmetryarises from the introduction of a radiation boundary conditions to handle the semi-infinitecharacter of the half-space region. Requirements of physical accuracy dictate rather finediscretization and, thusly, large systems of equations. The core to the extraction of relevantphysical performance parameters is dependent upon the underlying modeling framework.In three dimensional settings of practical interest, such systems are too large to be handleddirectly and must be solved iteratively. In this talk, I will cover the physical background ofthe problem class of interest, how such systems can be modeled, and then solved. Particularinterest will be paid to the radiation boundary conditions (perfectly matched layers versushigher order absorbing boundary conditions), issues associated with frequency domainversus time domain methods, and how these choices interact with iterative solvertechnologies in sometimes unexpected ways. Time permitting I will also touch upon the issue of harmonic inversion methods of this class of problems.