16:00
Continua of Steadily Rotating Stars
Abstract
Forthcoming events in this series
We talk about the global-in-time well-posedness of classical solutions to the vacuum free boundary problem of the 1D viscous Saint-Venant system for laminar shallow water with large data. Since the depth of the fluid vanishes on the moving boundary, the momentum equations become degenerate both in the time evolution and spatial dissipation, which may lead to singularities for the derivatives of the velocity of the fluid and then makes it challenging to study classical solutions. By exploiting the intrinsic degenerate-singular structures of the viscous Saint-Venant system, we are able to identify two classes of admissible initial depth profile and obtain the global well-posedness theory here: the first class of the initial depth profile satisfies the well-known BD entropy condition; the second class of the initial depth profile satisfies the well-known physical vacuum boundary condition, but violates the BD entropy condition. One of the key ingredients of the analysis here is to establish some new degenerate weighted estimates for the effective velocity via its transport properties, which do not require the initial BD entropy condition or the physical vacuum boundary condition. These new estimates enable one to obtain the upper bound for the first order spatial derivative of the flow map. Then the global-in-time regularity uniformly up to the vacuum boundary can be obtained by carrying out a series of singular or degenerate weighted energy estimates carefully designed for this system.
The hot spots conjecture, proposed by Rauch in 1974, asserts that the second Neumann eigenfunction of the Laplacian achieves its global maximum (the hottest point) exclusively on the boundary of the domain. Notably, for triangular domains, the absence of interior critical points was recently established by Judge and Mondal in [Ann. Math., 2022]. Nevertheless, several important questions about the second Neumann eigenfunction in triangles remain open. In this talk, we address issues such as: (1) the uniqueness of non-vertex critical points; (2) the necessary and sufficient conditions for the existence of non-vertex critical points; (3) the precise location of the global extrema; (4) the position of the nodal line; among others. Our results not only confirm both the original theorem and Conjecture 13.6 proposed by Judge and Mondal in [Ann. Math., 2020], but also accomplish a key objective outlined in the Polymath 7 research thread 1 led by Terence Tao. Furthermore, we resolve an eigenvalue inequality conjectured by Siudeja [Proc. Amer. Math. Soc., 2016] concerning the ordering of mixed Dirichlet–Neumann Laplacian eigenvalues for triangles. Our approach employs the continuity method via domain deformation.
The hydrodynamic description for emergent behavior of interacting agents is governed by Euler alignment equations, driven by different protocols of pairwise communication kernels. A main question of interest is how short- vs. long-range interactions dictate the large-crowd, long-time dynamics.
The equations lack closure for the pressure away thermal equilibrium. We identify a distinctive feature of Euler alignment -- a reversed direction of entropy. We discuss the role of a reversed entropy inequality in selecting mono-kinetic closure for emergence of strong solutions, prove the existence of such solutions, and characterize their related invariants which extend the 1-D notion of an “e” quantity.
Event Timings:
16:00 – 16:10 Refreshments (Served in the North Mezzanine)
16:10 – 17:10 Talk by Prof. Luis Caffarelli
17:10 – 17:30 Refreshments Break (20mins - Served in the North Mezzanine)
17:30 – 18:30 Talk by Prof Irene Martínez Gamba
Each talk will have a Q&A afterwards.
Register your interest HERE
Title: Topics on regularity theory for fully non-linear integro-differential equations
Abstract: We will focus on local and non-local Monge Ampere type equations, equations with deforming kernels and convex envelopes of functions with optimal special conditions. We discuss global solutions and their regularity properties.
Title: Quasilinear Conservative Collisional Transport in Kinetic Mean Field models
Abstract: We shall focus the on the interplay of nonlinear analysis and numerical approximations to mean field models in particle physics where kinetic transport flows in momentum are strongly nonlinearly modified by macroscopic quantities in classical or spectral density spaces. Two noteworthy models arise: the classical Fokker-Plank Landau dynamics as a low magnetized plasma regimes in the modeling of perturbative non-local high order terms. The other one corresponds to perturbation under strongly magnetized dynamics for fast electrons in momentum space give raise to a coupled system of classical kinetic diffusion processes described by the balance equations for electron probability density functions (electron pdf) coupled to the time dynamics on spectral energy waves (quasi-particles) in a quantum process of their resonant interaction. Both models are rather different, yet there are derived form the Liouville-Maxwell system under different scaling. Analytical tools and some numerical simulations show a presence of strong hot tail anisotropy formation taking the stationary states away from Classical equilibrium solutions stabilization for the iteration in a three dimensional cylindrical model. The semi-discrete schemes preserves the total system mass, momentum and energy, which are enforced by the numerical scheme. Error estimates can be obtained as well.
Work in collaboration with Clark Pennie and Kun Huang
We present our works on two problems in global analysis (i.e.,analysis on manifolds): One concerns the compactness of the space of smooth $d$-dimensional immersed hypersurfaces with uniformly $L^d$-bounded second fundamental forms, and the other concerns the validity of W^{2,p}$-elliptic estimates for the Laplace--Beltrami operator on open manifolds. We construct explicit counterexamples to both problems. The onstructions involve rapid oscillations and wild spirals, with motivations derived from physical phenomena.
The derivation of first-order nonlinear transport PDEs via interacting particles subject only to deterministic forces is crucial in the socio-biological sciences and in the real world applications (e.g. vehicular traffic, pedestrian movements), as it provides a rigorous justification to a "continuum" description in situations more naturally described by a discrete approach. This talk will collect recent results on the derivation of entropy solutions to scalar conservation laws (arising e.g. in traffic flow) as many particle limits of "follow-the-leader"-type ODEs, including extensions to the case with Dirichlet boundary conditions and to the Hughes model for pedestrian movements (the results involve S. Fagioli, M. D. Rosini, G. Russo). I will then describe a recent extension of this approach to nonlocal transport equations with a "nonlinear mobility" modelling prevention of overcrowding for high densities (in collaboration with S. Fagioli and E. Radici).
We consider the behaviors of global solutions to the initial value problems for the multi-dimensional Navier-Stokes(Euler)-Fokker-Planck equations. It is shown that due to the micro-macro coupling effects of relaxation damping type, the sound wave type propagation of this NSFP or EFP system for two-phase fluids is observed with the wave speed determined by the two-phase fluids. This phenomena can not be observed for the pure Fokker-Planck equation and the Navier-Stokes(Euler) equation with frictional damping.
We solve the construction of the turbulent two point functions in the following manner:
A mathematical theory, based on a few physical laws and principles, determines the construction of the turbulent two point function as the expectation value of a statistically defined random field. The random field is realized via an infinite induction, each step of which is given in closed form.
Some version of such models have been known to physicists for some 25 years. Our improvements are two fold:
Because the construction is complex, usable approximations, known as surrogate models, have also been developed.
The importance of these results lies in the use of the two point function to improve on the subgrid models of Lecture I.
We also explain limitations. For the latter, we look at the deflagration to detonation transition within a type Ia supernova and decide that a completely different methodology is recommended. We propose to embed multifractal ideas within a physics simulation package, rather than attempting to embed the complex formalism of turbulent deflagration into the single fluid incompressible model of the two point function. Thus the physics based simulation model becomes its own surrogate turbulence model.
We discuss three methods for the simulation of turbulent fluids. The issue we address is not the important issue of numerical algorithms, but the even more basic question of the equations to be solved, otherwise known as the turbulence model. These equations are not simply the Navier-Stokes equations, but have extra, turbulence related terms, related to turbulent viscosity, turbulent diffusion and turbulent thermal conductivity. The extra terms are not “standard textbook” physics, but are hypothesized based on physical reasoning. Here we are concerned with these extra terms.
The many models, divided into broad classes, differ greatly in
Dependence on data
Complexity
Purpose and usage
For this reason, each of the classes of models has its own rationale and domain of usage.
We survey the landscape of turbulence models.
Given a turbulence model, we ask: what is the nature of convergence that a numerical algorithm should strive for? The answer to this question lies in an existence theory for the Euler equation based on the Kolmogorov 1941 turbulent scaling law, taken as a hypothesis (joint work with G-Q Chen).
When studying a systems of conservation laws in several space dimensions, A. Bressan conjectured that the flows $X^n(t)$ generated by a smooth vector fields $\mathbf b^n(t,x)$,
\[
\frac{d}{dt} X^n(t,y) = \mathbf b^n(t,X(t,y)),
\]
are compact in $L^1(I\!\!R^d)$ for all $t \in [0,T]$ if $\mathbf b^n \in L^\infty \cap \mathrm{BV}((0,t) \times I\!\!R^d)$ and they are nearly incompressible, i.e.
\[
\frac{1}{C} \leq \det(\nabla_y X(t,y)) \leq C
\]
for some constant $C$. This conjecture is implied by the uniqueness of the solution to the linear transport equation
\[
\partial_t \rho + \mathrm{div}_x(\rho \mathbf b) = 0, \quad \rho \in L^\infty((0,T) \times I\!\!R^d),
\]
and it is the natural extension of a series of results concerning vector fields $\mathbf b(t,x)$ with Sobolev regularity.
We will give a general framework to approach the uniqueness problem for the linear transport equation and to prove Bressan's conjecture.
We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections. Then we describe recent results on existence and uniqueness of regular reflection solutions for potential flow equation, and discuss some techniques involved in the proof. The approach is to reduce the shock reflection problem to a free boundary problem, and prove existence and uniqueness by a version of method of continuity. This involves apriori estimates of solutions in the elliptic region of the equation of mixed type, with ellipticity degenerating on some part of the boundary. For the proof of uniqueness, an important property of solutions is convexity of the free boundary. We will also discuss some open problems.
This talk is based on joint works with G.-Q. Chen and W. Xiang.
The uniformly degenerate elliptic equation is a special class of degenerate elliptic equations. It appears frequently in many important geometric problems. For example, the Beltrami-Laplace operator on conformally compact manifolds is uniformly degenerate elliptic, and the minimal surface equation in the hyperbolic space is also uniformly degenerate elliptic. In this talk, we discuss the global regularity for this class of equations in the classical Holder spaces. We also discuss some applications.
Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.
The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.
The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.
In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.
The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.
Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.
The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.
As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.
The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.
In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.
The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.
In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.
We will discuss 2d Euler and Boussinesq (incompressible) flows related to a possible boundary blow-up scenario for the 3d axi-symmetric case suggested by G. Luo and T. Hou, together with some easier model problems relevant for that situation.
1) The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.
We introduce a new approximation for the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is partially regular without using the concept of Cartesian currents.
2) Partial regularity in liquid crystals for the Oseen-Frank model: a new proof of the result of Hardt, Kinderlehrer and Lin.
Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure. We will present a new proof of Hardt, Kinderlehrer and Lin.
3) Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model.
The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model, which generalizes the heat flow for harmonic maps into the $2$-sphere. In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank model in 2D.
1) The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.
We introduce a new approximation for the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is partially regular without using the concept of Cartesian currents.
2) Partial regularity in liquid crystals for the Oseen-Frank model: a new proof of the result of Hardt, Kinderlehrer and Lin.
Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure. We will present a new proof of Hardt, Kinderlehrer and Lin.
3) Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model.
The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model, which generalizes the heat flow for harmonic maps into the $2$-sphere. In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank model in 2D.
We consider degenerate elliptic systems like the p-Laplacian system with p>1 and zero boundary data. The r.h.s. is given in divergence from div F. We prove a pointwise estimate (in terms of the sharp maximal function) bounding the gradient of the solution via the function F. This recovers several known results about local regularity estimates in L^q, BMO and C^a. Our pointwise inequality extends also to boundary points. So these regularity estimates hold globally as well. The global estimates in BMO and C^a are new.
Morrey's lower semicontinuity theorem for quasiconvex integrands is a
classical result that establishes the existence of minimisers to
variational problems by the Direct Method, provided the integrand
satisfies "standard" growth conditions (i.e. when the growth and
coercivity exponents match). This theorem has more recently been refined
to consider convergence in Sobolev Spaces below the growth exponent of
the integrand: such results can be used to show existence of solutions
to a "Relaxed minimisation problem" when we have "non-standard'" growth
conditions.
When the integrand satisfies linear coercivity
conditions, it is much more useful to consider the space of functions of
Bounded Variation, which has better compactness properties than
$W^{1,1}$. We review the key results in the standard growth case, before
giving an overview of recent results that we have obtained in the
non-standard case. We find that new techniques and ideas are required in
this setting, which in fact provide us with some interesting (and
perhaps unexpected) corollaries on the general nature of quasiconvex
functions.
Recent experimental work has determined the atomic structure of a quasicrystalline Cd-Yb alloy. It highlights the elegant role of polyhedra with icosahedral symmetry. Other work suggests that while chunks of periodic crystals and disordered glass predominate in the solid state, there are many hints of icosahedral clusters. This talk is based on a recent Mathematical Intelligencer article on quasicrystals with Marjorie Senechal.
The seminar will be followed by a drinks reception and forms part of a longer PDE and CoV related Workshop.
To register for the seminar and drinks reception go to http://doodle.com/acw6bbsp9dt5bcwb
In this talk we will show the existence of a regular "small" weak solution to the flow of the higher dimensional H-systems with initial-boundary conditions. We also analyze its time asymptotic bahavior and we give a stability result.
In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.
In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.
Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.