Past Partial Differential Equations Seminar

E.g., 2019-09-21
E.g., 2019-09-21
E.g., 2019-09-21
1 July 2019
16:00
Abstract

We will talk about our recent results on the uniqueness of regular reflection solutions for the potential flow equation in a natural class of self-similar solutions. The approach is based on a nonlinear version of method of continuity. An important property of solutions for the proof of uniqueness is the convexity of the free boundary.

  • Partial Differential Equations Seminar
1 July 2019
15:00
Athanasios Tzavaras
Abstract

The stabilization of thermo-mechanical systems is a classical problem in thermodynamics and well

understood in a context of gases. The objective of this talk is to indicate the role of null-Lagrangians and

certain transport/stretching identities in stabilizing thermomechanical systems associated with general

thermoelastic free energies. This allows to prove various convergence results among thermomechan-

ical theories, and suggests a variational scheme for the approximation of the equations of adiabatic

thermoelasticity.

  • Partial Differential Equations Seminar
28 June 2019
16:00
Professor Cheng Yu
Abstract

In this talk, I will talk about the existence of global weak solutions for the compressible Navier-Stokes equations, in particular, the viscosity coefficients depend on the density. Our main contribution is to further develop renormalized techniques so that the Mellet-Vasseur type inequality is not necessary for the compactness.  This provides existence of global solutions in time, for the barotropic compressible Navier-Stokes equations, for any $\gamma>1$, in three dimensional space, with large initial data, possibly vanishing on the vacuum. This is a joint work with D. Bresch, A. Vasseur.

  • Partial Differential Equations Seminar
10 June 2019
16:00
Kumbakonam Rajagopal
Abstract

After discussing the need for implicit constitutive relations to describe the response of both solids and fluids, I will discuss applications wherein such implicit constitutive relations can be gainfully exploited. It will be shown that such implicit relations can explain phenomena that have hitherto defied adequate explanation such as fracture and the movement of cracks in solids, the response of biological matter, and provide a new way to look at numerous non-linear phenomena exhibited by fluids. They provide a totally new and innovative way to look at the problem of Turbulence. It also turns out that classical Cauchy and Green elasticity are a small subset of the more general theory of elastic bodies defined by implicit constitutive equations. 

  • Partial Differential Equations Seminar
3 June 2019
16:00
Abstract

In this talk, I will present our recent progress collaborated with Prof. Gui-Qiang G. Chen and Prof. Paolo Secchi on two kinds of characteristic discontinuities: relativistic vortex sheets in three-dimensional Minkowski spacetime and multi-dimensional thermoelastic contact discontinuities.
 

  • Partial Differential Equations Seminar
28 May 2019
16:00
Abstract

Black holes are predicted by Einstein's theory of general relativity, and now we have ample observational evidence for their existence. However theoretically there are many unanswered questions about how black holes come into being. In this talk, with tools from hyperbolic PDE, quasilinear elliptic equations and geometric analysis, we will prove that, through a nonlinear focusing effect, initially low-amplitude and diffused gravitational waves can give birth to a trapped (black hole) region in our universe. This result extends the 2008 Christodoulou’s monumental work and it also proves a conjecture of Ashtekar on black-hole thermodynamics

  • Partial Differential Equations Seminar
20 May 2019
16:00
Abstract

In this talk we discuss the Type I blow up and the related problems in the 3D Euler equations. We say a solution $v$ to the Euler equations satisfies Type I condition at possible blow up time $T_*$ if $\lim\sup_{t\nearrow T_*} (T_*-t) \|\nabla v(t)\|_{L^\infty} <+\infty$. The scenario of Type I blow up is a natural generalization of the self-similar(or discretely self-similar) blow up. We present some recent progresses of our study regarding this. We first localize previous result that ``small Type I blow up'' is absent. After that we show that the atomic concentration of energy is excluded under the Type I condition. This result, in particular, solves the problem of removing discretely self-similar blow up in the energy conserving scale, since one point energy concentration is necessarily accompanied with such blow up. We also localize the Beale-Kato-Majda type blow up criterion. Using similar local blow up criterion for the 2D Boussinesq equations, we can show that Type I and some of Type II blow up in a region off the axis can be excluded in the axisymmetric Euler equations. These are joint works with J. Wolf.

  • Partial Differential Equations Seminar
13 May 2019
16:00
Abstract

In joint work with Peter Topping we introduce pyramid Ricci flows, defined throughout uniform regions of spacetime that are not simply parabolic cylinders, and enjoying curvature estimates that are not required to remain spatially constant throughout the domain of definition. This weakened notion of Ricci flow may be run in situations ill-suited to the classical theory. As an application of pyramid Ricci flows, we obtain global regularity results for three-dimensional Ricci limit spaces (extending results of Miles Simon and Peter Topping) and for higher dimensional PIC1 limit spaces (extending not only the results of Richard Bamler, Esther Cabezas-Rivas and Burkhard Wilking, but also the subsequent refinements by Yi Lai).
 

  • Partial Differential Equations Seminar
6 May 2019
16:00
Abstract

"We study the hydrodynamic limit for the isothermal dynamics of an anharmonic chain under hyperbolic space-time scaling under varying tension. The temperature is kept constant by a contact with a heat bath, realised via a stochastic momentum-preserving noise added to the dynamics. The noise is designed to be large at the microscopic level, but vanishing in the macroscopic scale. Boundary conditions are also considered: one end of the chain is kept fixed, while a time-varying tension is applied to the other end. We show that the volume stretch and momentum converge to a weak solution of the isothermal Euler equations in Lagrangian coordinates with boundary conditions."

  • Partial Differential Equations Seminar
29 April 2019
16:00
Abstract

For measuring families of curves, or, more generally, of measures, $M_p$-modulus is traditionally used. More recent studies use so-called plans on measures. In their fundamental paper Ambrosio, Di Marino and Savare proved that these two approaches are in some sense equivalent within $1<p<\infty$. We consider the limiting case $p=1$ and show that the $AM$-modulus can be obtained alternatively by the plan approach. On the way, we demonstrate unexpected behavior of the $AM$-modulus in comparison with usual capacities.

This is a joint work with Vendula Honzlov\'a Exnerov\'a, Ond\v{r}ej F.K. Kalenda and Olli Martio. Partially supported by the grant GA\,\v{C}R P201/18-07996S of the Czech Science Foundation.

  • Partial Differential Equations Seminar

Pages