Past Partial Differential Equations Seminar

E.g., 2020-02-21
E.g., 2020-02-21
E.g., 2020-02-21
17 February 2020
16:00
Qian Wang
Abstract

I will talk about my work arxiv:1911.05038. We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $2<s'<s$. The result extends the sharp result of Smith-Tataru and Wang, established in the irrotational case, i.e $ \omega=0$, which is known to be optimal for $s>2$. At the opposite extreme, in the incompressible case, i.e. with a constant density, the result is known to hold for $ \omega\in H^s$, $s>3/2$ and fails for $s\le 3/2$, see the work of Bourgain-Li. It is thus natural to conjecture that the optimal result should be $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $s>2, \, s'>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustic spacetime.
 

  • Partial Differential Equations Seminar
10 February 2020
16:00
Abstract

The Kruzkhov's semi-group of a scalar conservation law extends as a semi-group over $L^1$, thanks to its contraction property. M. Crandall raised in 1972 the question of whether its trajectories can be distributional, entropy solutions, or if they are only "abstract" solutions. We solve this question in the case of the multi-dimensional Burgers equation, which is a paradigm for non-degenerate conservation laws. Our answer is the consequence of dispersive estimates. We first establish $L^p$-decay rate by applying the recently discovered phenomenon of Compensated Integrability. The $L^\infty$-decay follows from a De Giorgi-style argument. This is a collaboration with Luis Sivestre (University of Chicago).

  • Partial Differential Equations Seminar
3 February 2020
16:00
Matteo Cozzi
Abstract

Nonlocal minimal surfaces are hypersurfaces of Euclidean space that minimize the fractional perimeter, a geometric functional introduced in 2010 by Caffarelli, Roquejoffre, and Savin in connection with phase transition problems displaying long-range interactions.

In this talk, I will introduce these objects, describe the most important progresses made so far in their analysis, and discuss the most challenging open questions.

I will then focus on the particular case of nonlocal minimal graphs and present some recent results obtained on their regularity and classification in collaboration with X. Cabre, A. Farina, and L. Lombardini.

 

  • Partial Differential Equations Seminar
27 January 2020
16:00
Asma Hassannezhad
Abstract

 The Steklov eigenvalue problem is an eigenvalue problem whose spectral parameters appear in the boundary condition. On a Riemannian surface with smooth boundary, Steklov eigenvalues have a very sharp asymptotic expansion. Also, a number of interesting sharp bounds for the $k$th Steklov eigenvalues have been known. We extend these results on orbisurfaces and discuss how the structure of orbifold singularities comes into play. This is joint work with Arias-Marco, Dryden, Gordon, Ray and Stanhope.

  • Partial Differential Equations Seminar
20 January 2020
16:00
Elena Maeder-Baumdicker
Abstract

I will explain what the Willmore Morse Index of unbranched Willmore spheres in Euclidean three-space is and how to compute it. It turns out that several geometric properties at the ends of complete minimal surfaces with embedded planar ends are related to the mentioned Morse index.
One consequence of that computation is that all unbranched Willmore spheres are unstable (except for the round sphere). This talk is based on work with Jonas Hirsch.

 

  • Partial Differential Equations Seminar
2 December 2019
16:00
Florian Theil
Abstract


The AO-model describes crystalline solids in the presence of defects like dislocation lines. We demonstrate that the model supports low-energy structures like grains and determine for simple geometries the grain boundary energy density. At small misorientation angles we recover the well-known Read-Shockley law. Due to the atomistic nature of the model it is possible to consider the the Boltzmann-Gibbs distribution at non-zero temperature. Using ideas by Froehlich and Spencer we prove rigorously the presence of long-range order if the temperature is sufficiently small.
 

  • Partial Differential Equations Seminar
25 November 2019
16:00
Jonas Hirsh

Further Information: 

Note the change of room

Abstract

We investigate properties of minimisers of a variational model describing the shape of charged liquid droplets. Roughly speaking, the shape of a charged liquid droplet is determined by the competition between an ”aggerating” term, due to surface tension forces, and to a ”disaggergating” term due to the repulsive effect between charged particles.

In my talk I want to present our ”first” analysis of the so called Deby-Hückel-type free energy. In particular we show that minimisers satisfy a partial regularity result, a first step of understanding the further properties of a minimiser. The presented results are joint work with Guido De Philippis and Giulia Vescovo.

 

  • Partial Differential Equations Seminar
18 November 2019
16:00
Jason Lotay
Abstract

The Gibbons-Hawking ansatz is a powerful method for constructing a large family of hyperkaehler 4-manifolds (which are thus Ricci-flat), which appears in a variety of contexts in mathematics and theoretical physics. I will describe work in progress to understand the theory of minimal surfaces and mean curvature flow in these 4-manifolds. In particular, I will explain a proof of a version of the Thomas-Yau Conjecture in Lagrangian mean curvature flow in this setting. This is joint work with G. Oliveira.

  • Partial Differential Equations Seminar
11 November 2019
16:00
Abstract

The translation method for constructing quasiconvex lower bound of a given function in the calculus of variations and the notion of compensated convex transforms for tightly approximate functions in Euclidean spaces will be briefly reviewed. By applying the upper compensated convex transform to the finite maximum function we will construct computable quasiconvex functions with finitely many point wells contained in a subspace with rank-one matrices. The complexity for evaluating the constructed quasiconvex functions is O(k log k) with k the number of wells involved. If time allows, some new applications of compensated convexity will be briefly discussed.

  • Partial Differential Equations Seminar
4 November 2019
16:00
Andrea Mondino
Abstract

In the seminar I will present a recent work joint with  S. Suhr (Bochum) giving an optimal transport formulation of the full Einstein equations of general relativity, linking the (Ricci) curvature of a space-time with the cosmological constant and the energy-momentum tensor. Such an optimal transport formulation is in terms of convexity/concavity properties of the Shannon-Bolzmann entropy along curves of probability measures extremizing suitable optimal transport costs. The result gives a new connection between general relativity and  optimal transport; moreover it gives a mathematical reinforcement of the strong link between general relativity and thermodynamics/information theory that emerged in the physics literature of the last years.

  • Partial Differential Equations Seminar

Pages