Forthcoming events in this series


Tue, 14 May 2019

12:00 - 13:15
L4

Local operators in integrable quantum field theories

Henning Bostelmann
(York)
Abstract


Integrable models provide simplified examples of quantum field theories with self-interaction. As often in relativistic quantum theory, their local observables are difficult to control mathematically. One either tries to construct pointlike local quantum fields, leading to possibly divergent series expansions, or one defines the local observables indirectly via wedge-local quantities, losing control over their explicit form.

We propose a new, hybrid approach: We aim to describe local quantum fields; but rather than exhibiting their n-point functions and verifying the Wightman axioms, we establish them as closed operators affiliated with a net of von Neumann algebras. This is shown to work at least in the Ising model.

 

Tue, 30 Apr 2019

14:00 - 15:15
L4

Single electron entanglement and the Aharonov-Bohm Effect

Vlatko Vedral
(Oxford)
Further Information

Please note the change of time (just this week)

Abstract

I will review the idea that entanglement must ultimately be understood in terms of modes, rather than in terms of particles. The most striking instance of mode entanglement is a single particle entangled state, which I will discuss both in the case of bosons as well as in the case of fermions. I then proceed to show that the Aharonov-Bohm effect can be understood by using a single electron entangled state. Finally, I will argue that this demonstrates beyond doubt that the Aharonov-Bohm effect is non non-local, contrary to what is frequently claimed in the literature.

 

Tue, 26 Feb 2019

12:00 - 13:15
L4

Higgsplosion: excitements and problems

Alexander Belyaev
(Southampton University)
Abstract

A recent calculation of the multi-Higgs boson production in scalar theories
with spontaneous symmetry breaking has demonstrated the fast growth of the
cross section with the Higgs multiplicity at sufficiently large energies,
called “Higgsplosion”. It was argued that “Higgsplosion” solves the Higgs
hierarchy and fine-tuning problems. The phenomena looks quite exciting,
however in my talk I will present arguments that: a) the formula for
“Higgsplosion” has a limited applicability and inconsistent with unitarity
of the Standard Model; b) that the contribution from “Higgsplosion” to the
imaginary part of the Higgs boson propagator cannot be re-summed in order to
furnish a solution of the Higgs hierarchy and fine-tuning problems.

Based on our recent paper https://arxiv.org/abs/1808.05641 (A. Belyaev, F. Bezrukov, D. Ross)

 

Tue, 29 Jan 2019

12:00 - 13:15
L4

Using Bose-Einstein condensates to explore scales where quantum physics and general relativity overlap

Ivette Fuentes
(University of Nottingham)
Abstract

Progress in developing a consistent theory that describes physical phenomena
at scales where quantum and general relativistic effects are large is
hindered by the lack of experiments. In this talk, we present a proposal
that would overcome this experimental obstacle by using a Bose-Einstein
condensate (BEC) to test for possible conflicts between quantum theory and
general relativity. Recent developments in large BEC systems allows us to
verify if gravitationally-induced wave function collapse occurs at the
timescales predicted by Roger Penrose. BECs with high particle numbers
(N>10^9) can also be used to demonstrate quantum field theory in curved
spacetime by observing how changes in the spacetime affect the phononic
quantum field of a BEC. These effects will enable the development of a new
generation of instruments that will be able to probe scales where new
physics might emerge, with applications including gravitational wave
detectors, gravimeters, gradiometers and dark energy probes.

Tue, 20 Nov 2018

12:00 - 13:15
L4

A PDE construction of the Euclidean $\Phi^4_3$ quantum field theory

Martina Hofmanova
(Bielefeld and visiting Newton Institute)
Abstract

We present a self-contained construction of the Euclidean $\Phi^4$ quantum
field theory on $\mathbb{R}^3$ based on PDE arguments. More precisely, we
consider an approximation of the stochastic quantization equation on
$\mathbb{R}^3$ defined on a periodic lattice of mesh size $\varepsilon$ and
side length $M$. We introduce an energy method and prove tightness of the
corresponding Gibbs measures as $\varepsilon \rightarrow 0$, $M \rightarrow
\infty$. We show that every limit point satisfies reflection positivity,
translation invariance and nontriviality (i.e. non-Gaussianity). Our
argument applies to arbitrary positive coupling constant and also to
multicomponent models with $O(N)$ symmetry. Joint work with Massimiliano
Gubinelli.

Tue, 13 Nov 2018

12:00 - 13:15
L4

Recent progress in 2-dimensional quantum Yang-Mills theory

Thierry Lévy
(Paris Marie Curie and visiting Newton Institute)
Abstract

Quantum Yang-Mills theory is an important part of the Standard model built
by physicists to describe elementary particles and their interactions. One
approach to this theory consists in constructing a probability measure on an
infinite-dimensional space of connections on a principal bundle over
space-time. However, in the physically realistic 4-dimensional situation,
the construction of this measure is still an open mathematical problem. The
subject of this talk will be the physically less realistic 2-dimensional
situation, in which the construction of the measure is possible, and fairly
well understood.

In probabilistic terms, the 2-dimensional Yang-Mills measure is the
distribution of a stochastic process with values in a compact Lie group (for

example the unitary group U(N)) indexed by the set of continuous closed
curves with finite length on a compact surface (for example a disk, a sphere
or a torus) on which one can measure areas. It can be seen as a Brownian
motion (or a Brownian bridge) on the chosen compact Lie group indexed by
closed curves, the role of time being played in a sense by area.

In this talk, I will describe the physical context in which the Yang-Mills
measure is constructed, and describe it without assuming any prior
familiarity with the subject. I will then present a set of results obtained
in the last few years by Antoine Dahlqvist, Bruce Driver, Franck Gabriel,
Brian Hall, Todd Kemp, James Norris and myself concerning the limit as N
tends to infinity of the Yang-Mills measure constructed with the unitary
group U(N).

Tue, 23 Oct 2018

12:00 - 13:15
L4

Hawking points ?

Roger Penrose
Abstract

A dedicated search of the CMB sky, driven by implications of conformal
cyclic cosmology (CCC), has revealed a remarkably strong signal, previously
unobserved, of numerous small regions in the CMB sky that would appear to be
individual points on CCC's crossover 3-surface from the previous aeon, most
readily interpreted as the conformally compressed Hawking radiation from
supermassive black holes in the previous aeon, but difficult to explain in
terms of the conventional inflationary picture.

Tue, 05 Jun 2018

12:00 - 13:15
L4

A Cohomological Perspective on Algebraic Quantum Field Theory

Eli Hawkins
(University of York)
Abstract

After outlining the principles of Algebraic Quantum Field Theory (AQFT) I will describe the generalization of Hochschild cohomology that is relevant to describing deformations in AQFT. An interaction is described by a cohomology class.

Tue, 22 May 2018

12:00 - 13:15
L4

Towards an M5-brane model: A 6d superconformal field theory

Christian Saemann
(Heriot Watt University)
Abstract

I will discuss a classical six-dimensional superconformal field theory containing a non-abelian tensor multiplet which we recently constructed in arXiv:1712.06623.

This theory satisfies many of the properties of the mysterious (2,0)-theory: non-abelian 2-form potentials, ADE-type gauge structure, reduction to Yang-Mills theory and reduction to M2-brane models. There are still some crucial differences to the (2,0)-theory, but our action seems to be a key stepping stone towards a potential classical formulation of the (2,0)-theory.

I will review in detail the underlying mathematics of categorified gauge algebras and categorified connections, which make our constructions possible.

 

Tue, 24 Apr 2018

12:00 - 13:15
L4

Homotopical algebraic quantum field theory

Alexander Schenkel
(University of Nottingham)
Abstract


Algebraic quantum field theories (AQFTs) are traditionally described as functors that assign algebras (of observables) to spacetime regions. These functors are required to satisfy a list of physically motivated axioms such as commutativity of the multiplication for spacelike separated regions. In this talk we will show that AQFTs can be described as algebras over a colored operad. This operad turns out to be interesting as it describes an interpolation between non-commutative and commutative algebraic structures. We analyze our operad from a homotopy theoretical perspective and determine a suitable resolution that describes the commutative behavior up to coherent homotopies. We present two concrete constructions of toy-models of algebras over the resolved operad in terms of (i) forming cochains on diagrams of simplicial sets (or stacks) and (ii) orbifoldization of equivariant AQFTs.

 

Tue, 27 Feb 2018

12:00 - 13:15
L4

High frequency limit for Einstein equations

Cecile Huneau
(Ecole Polytechnique)
Abstract

In this talk, I will present the construction of a family of solutions to
vacuum Einstein equations which consist of an arbitrary number of high
frequency waves travelling in different directions. In the high frequency
limit, our family of solutions converges to a solution of Einstein equations
coupled to null dusts. This construction is an illustration of the so called
backreaction, studied by physicists (Isaacson, Burnet, Green, Wald...) : the
small scale inhomogeneities have an effect on the large scale dynamics in
the form of an energy impulsion tensor in the right-hand side of Einstein
equations. This is a joint work with Jonathan Luk (Stanford).

Tue, 20 Feb 2018

12:00 - 13:15
L4

Conformal field theory from affine Lie algebras at fractional levels

Simon Wood
(Cardiff)
Abstract

Some of the most studied examples of conformal field theories
include
the Wess-Zumino-Witten models. These are conformal field theories exhibiting
affine Lie algebra symmetry at non-negative integers levels. In this talk I
will
discuss conformal field theories exhibiting affine Lie algebra symmetry at
certain rational (hence fractional) levels whose structure is arguably even
more intricate than the structure of the non-negative integer levels,
provided
one is prepared to look beyond highest weight modules.

Tue, 13 Feb 2018

12:00 - 13:15
L4

A Finite Theory of Quantum Physics

Tim Palmer
(Oxford Physics)
Abstract

Hardy's axiomatic approach to quantum theory revealed that just one axiom
distinguishes quantum theory from classical probability theory: there should
be continuous reversible transformations between any pair of pure states. It
is the single word `continuous' that gives rise to quantum theory. This
raises the question: Does there exist a finite theory of quantum physics
(FTQP) which can replicate the tested predictions of quantum theory to
experimental accuracy? Here we show that an FTQP based on complex Hilbert
vectors with rational squared amplitudes and rational phase angles is
possible providing the metric of state space is based on p-adic rather than
Euclidean distance. A key number-theoretic result that accounts for the
Uncertainty Principle in this FTQP is the general incommensurateness between
rational $\phi$ and rational $\cos \phi$. As such, what is often referred to
as quantum `weirdness' is simply a manifestation of such number-theoretic
incommensurateness. By contrast, we mostly perceive the world as classical
because such incommensurateness plays no role in day-to-day physics, and
hence we can treat $\phi$ (and hence $\cos \phi$) as if it were a continuum
variable. As such, in this FTQP there are two incommensurate Schr\"{o}dinger
equations based on the rational differential calculus: one for rational
$\phi$ and one for rational $\cos \phi$. Each of these individually has a

simple probabilistic interpretation - it is their merger into one equation
on the complex continuum that has led to such problems over the years. Based
on this splitting of the Schr\"{o}dinger equation, the measurement problem
is trivially solved in terms of a nonlinear clustering of states on $I_U$.
Overall these results suggest we should consider the universe as a causal
deterministic system evolving on a finite fractal-like invariant set $I_U$
in state space, and that the laws of physics in space-time derive from the
geometry of $I_U$. It is claimed that such a  deterministic causal FTQP will
be much easier to synthesise with general relativity theory than is quantum
theory.

Tue, 21 Nov 2017
12:00
L4

Index Theory for Dirac Operators in Lorentzian Signature and Geometric Scattering

Alexander Strohmaier
(Leeds)
Abstract

I will review some classical results on geometric scattering
theory for linear hyperbolic evolution equations
on globally hyperbolic spacetimes and its relation to particle and charge
creation in QFT. I will then show that some index formulae for the
scattering matrix can be interpreted as a special case of the  Lorentzian
analog of the Atyiah-Patodi-Singer index theorem. I will also discuss a
local version of this theorem and its relation to anomalies in QFT.
(Joint work with C. Baer)

Tue, 07 Nov 2017
12:00
L4

Thirty years of transplanckian-energy collisions: where do we stand?

Gabriele Veneziano
(Cern)
Abstract

I will start with a quick reminder of what we have learned so far about
transplanckian-energy collisions of particles, strings and branes.
I will then address the (so-far unsolved) problem of gravitational
bremsstrahlung from massless particle collisions at leading order in the
gravitational deflection angle.
Two completely different calculations, one classical and one quantum, lead
to the same final, though somewhat puzzling, result.

 

Tue, 24 Oct 2017

12:00 - 13:15
L4

Convergence and new perspectives in perturbative algebraic quantum field theory

Kasia Rejzner
(University of York)
Abstract

In this talk I will present recent results obtained within the
framework of perturbative algebraic quantum field theory. This novel
approach to mathematical foundations of quantum field theory allows to
combine the axiomatic framework of algebraic QFT by Haag and Kastler with
perturbative methods. Recently also non-perturbative results have been
obtained within this approach. I will report on these results and present
new perspectives that they open for better understanding of foundations of
QFT.

Tue, 17 Oct 2017

12:00 - 13:15
L4

Waiting for Unruh

Jorma Louko
(Nottingham)
Abstract

How long does a uniformly accelerated observer need to interact with a
quantum field in order to record thermality in the Unruh temperature?
In the limit of large excitation energy, the answer turns out to be
sensitive to whether (i) the switch-on and switch-off periods are
stretched proportionally to the total interaction time T, or whether
(ii) T grows by stretching a plateau in which the interaction remains
at constant strength but keeping the switch-on and switch-off
intervals of fixed duration. For a pointlike Unruh-DeWitt detector,
coupled linearly to a massless scalar field in four spacetime
dimensions and treated within first order perturbation theory, we show
that letting T grow polynomially in the detector's energy gap E
suffices in case (i) but not in case (ii), under mild technical
conditions. These results limit the utility of the large E regime as a

probe of thermality in time-dependent versions of the Hawking and
Unruh effects, such as an observer falling into a radiating black
hole. They may also have implications on the design of prospective
experimental tests of the Unruh effect.

Based on arXiv:1605.01316 (published in CQG) with Christopher J
Fewster and Benito A Juarez-Aubry.

Tue, 13 Jun 2017

12:00 - 13:15
L4

Dark Matter Decay?  Possible Observational Tests—According to CCC

Roger Penrose
Abstract

In the cosmological scheme of conformal cyclic cosmology (CCC), the equations governing the crossover form each aeon to the next demand the creation of a dominant new scalar material that is postulated to be dark matter. In order that this material does not build up from aeon to aeon, it is taken to decay away completely over the history of the aeon. The dark matter particles (erebons) would be expected to behave as essentially classical particles of around a Planck mass, interacting only gravitationally, and their decay would be mainly responsible for the (~scale invariant)

temperature fluctuations in the CMB of the succeeding aeon. In our own aeon, erebon decay ought to be detectable as impulsive events observable by gravitational wave detectors.