Forthcoming events in this series
14:15
Optimal Control Under Stochastic Target Constraints
Abstract
We study a class of Markovian optimal stochastic control problems in which the controlled process $Z^\nu$ is constrained to satisfy an a.s.~constraint $Z^\nu(T)\in G\subset \R^{d+1}$ $\Pas$ at some final time $T>0$. When the set is of the form $G:=\{(x,y)\in \R^d\x \R~:~g(x,y)\ge 0\}$, with $g$ non-decreasing in $y$, we provide a Hamilton-Jacobi-Bellman characterization of the associated value function. It gives rise to a state constraint problem where the constraint can be expressed in terms of an auxiliary value function $w$ which characterizes the set $D:=\{(t,Z^\nu(t))\in [0,T]\x\R^{d+1}~:~Z^\nu(T)\in G\;a.s.$ for some $ \nu\}$. Contrary to standard state constraint problems, the domain $D$ is not given a-priori and we do not need to impose conditions on its boundary. It is naturally incorporated in the auxiliary value function $w$ which is itself a viscosity solution of a non-linear parabolic PDE. Applying ideas recently developed in Bouchard, Elie and Touzi (2008), our general result also allows to consider optimal control problems with moment constraints of the form $\Esp{g(Z^\nu(T))}\ge 0$ or $\Pro{g(Z^\nu(T))\ge 0}\ge p$.
15:45
A new combinatorial method for calculating the moments of Lévy area
Abstract
14:15
Existence of unique solutions for SDEs for individual driving paths.
Abstract
15:45
Lyapunov exponents of products of non-identically distributed independent matrices
Abstract
It is well known that the description of the asymptotic behaviour of products of i.i.d random matrices can be derived from the properties of the Lyapunov exponents of these matrices. So far, the fact that the matrices in question are IDENTICALLY distributed, had been crucial for the existing theories. The goal of this work is to explain how and under what conditions one might be able to control products of NON-IDENTICALLY distributed matrices.
14:15
On the convergence and the Applications of Self Interacting Markov chains
Abstract
We present a new class of self interacting Markov chain models. In contrast to traditional Markov chains, their time evolution may depend on the occupation measure of the past values. We propose a theoretical basis based on measure valued processes and semigroup technics to analyze their asymptotic behaviour as the time parameter tends to infinity. We exhibit different types of decays to equilibrium depending on the level of interaction. In the end of the talk, we shall present a self interacting methodology to sample from a sequence of target probability measures of increasing complexity. We also analyze their fluctuations around the limiting target measures.
15:45
Random walks in random environment on "Z"
Abstract
We consider transient random walks in random environment on Z with zero asymptotic speed. In a seminal paper, Kesten, Kozlov and Spitzer proved that the hitting time of the level "n" converges in law, after a proper normalization, towards a positive stable law, but the question of the description of its parameter was left open since that time. A new approach to this problem, based on a precise description of Sinai's potential, leads to a complete characterization of this stable law, making a tight link with Kesten's renewal series. The case of Dirichlet environment turns out to be remarkably explicit. Quenched results on this model will be presented if time permits.
14:15
Numerical Solution of Stochastic Differential Equations Evolving on Manifolds
Abstract
We present numerical schemes for nonlinear stochastic differential equations whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action and subsequently to the corresponding Lie algebra.
We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Lastly, we demonstrate our methods by presenting some numerical examples
15:45
The story of three polytopes and what they tell us about information acquisition
Abstract
We will examine the typical structure of random polytopes by projecting the three fundamental regular polytopes: the simplex, cross-polytope, and hypercube. Along the way we will explore the implications of their structure for information acquisition and optimization. Examples of these implications include: that an N-vector with k non-zeros can be recovered computationally efficiently from only n random projections with n=2e k log(N/n), or that for a surprisingly large set of optimization problems the feasible set is actually a point. These implications are driving a new signal processing paradigm, Compressed Sensing, which has already lead to substantive improvements in various imaging modalities. This work is joint with David L. Donoho.
14:15
Allelic partition of Galton-Watson trees
Abstract
We will consider a (sub) critical Galton-Watson process with neutral mutations (infinite alleles model), and decompose the entire population into clusters of individuals carrying the same allele. We shall specify the law of this allelic partition in terms of the distribution of the number of clone-children and the number of mutant-children of a typical individual. Some limit theorems related to the distribution of the allelic partition will be also presented.
15:45
Self-organised criticality in mean field random graph models
Abstract
We modify the usual Erdos-Renyi random graph evolution by letting connected clusters 'burn down' (i.e. fall apart to disconnected single sites) due to a Poisson flow of lightnings. In a range of the intensity of rate of lightnings, the system sticks to a permanent critical state (i.e. exhibits so-called self-organised critical behaviour). The talk will be based on joint work with Balint Toth.
14:15
Geometric estimates for the uniform spanning forest
Abstract
The uniform spanning forest (USF) in a graph
is a random spanning forest obtained as the limit of uniformly chosen spanning
trees on finite subgraphs. The USF is known to have stochastic dimension 4 on
graphs that are "at least 4 dimensional" in a certain sense. In this
talk I will look at more detailed estimates on the geometry of a fixed
component of the USF in the special case of the d-dimensional integer lattice,
d > 4. This is motivated in part by the study of random walk restricted to a
fixed component of the USF.
15:45
Phase diagram for a stochastic reaction diffusion equation.
Abstract
The system
u_t = Delta u + buv - cu + u^{1/2} dW
v_t = - uv
models the evolution of a branching population and its usage of a non-renewable resource.
A phase diagram in the parameters (b,c) describes its long time evolution.
We describe this, including some results on asymptotics in the phase diagram for small and large values of the parameters.
14:15
15:45
Backward SDEs with constrained jumps and Quasi-Variational Inequalities
Abstract
We introduce a class of backward stochastic differential equations (BSDEs) driven by Brownian motion and Poisson random measure, and subject to constraints on the jump component. We prove the existence and uniqueness of the minimal solution for the BSDEs by using a penalization approach. Moreover, we show that under mild conditions the minimal solutions to these constrained BSDEs can be characterized as the unique viscosity solution of quasi-variational inequalities (QVIs), which leads to a probabilistic representation for solutions to QVIs. Such a representation in particular gives a new stochastic formula for value functions of a class of impulse control problems. As a direct consequence we obtain a numerical scheme for the solution of such QVIs via the simulation of the penalized BSDEs. This talk is based on joint work with I. Kharroubi, J. Ma and J. Zhang.
14:15
"Decay to equilibrium for linear and nonlinear semigroups"
Abstract
In this talk I will present recent results on ergodicity of Markov semigroups in large dimensional spaces including interacting Levy type systems as well as some R-D models.
15:45
Partial Differential Equations driven by rough paths
Abstract
In this talk, we present an extension of the theory of rough paths to partial differential equations. This allows a robust approach to stochastic partial differential equations, and in particular we can replace Brownian motion by more general Gaussian and Markovian noise. Support theorems and large deviation statements all become easy corollaries of the corresponding statements of the driving process. This is joint work with Peter Friz in Cambridge.
14:15
Wiener-Hopf factorization as a general method for valuation of real and American options
Abstract
A new general approach to optimal stopping problems in L\'evy models, regime switching L\'evy models and L\'evy models with stochastic volatility and stochastic interest rate is developed. For perpetual options, explicit solutions are found, for options with finite time horizon, time discretization is used, and explicit solutions are derived for resulting sequences of perpetual options.
The main building block is the option to abandon a monotone payoff stream. The optimal exercise boundary is found using the operator form of the Wiener-Hopf method, which is standard in analysis, and interpretation of the factors as {\em expected present value operators} (EPV-operators) under supremum and infimum processes.
Other types of options are reduced to the option to abandon a monotone stream. For regime-switching models, an additional ingredient is an efficient iteration procedure.
L\'evy models with stochastic volatility and/or stochastic interest rate are reduced to regime switching models using discretization of the state space for additional factors. The efficiency of the method for 2 factor L\'evy models with jumps and for 3-factor Heston model with stochastic interest rate is demonstrated. The method is much faster than Monte-Carlo methods and can be a viable alternative to Monte Carlo method as a general method for 2-3 factor models.
Joint work of Svetlana Boyarchenko,University of Texas at Austin and Sergei Levendorski\v{i},
University of Leicester
15:45
Dewonderizing a result of Carne about random walks
Abstract
I talk about a recent article of mine that aims at giving an alternative proof to a formula by Carne on random walks. Consider a discrete, reversible random walk on a graph (not necessarily the simple walk); then one has a surprisingly simple formula bounding the probability of getting from a vertex x at time 0 to another vertex y at time t, where it appears a universal Gaussian factor essentially depending on the graph distance between x and y. While Carne proved that result in 1985, through‘miraculous’ (though very pretty!) spectral analysis reasoning, I will expose my own ‘natural' probabilistic proof of that fact. Its main interest is philosophical, but it also leads to a generalization of the original formula. The two main tools we shall use will be techniques of forward and backward martingales, and a tricky conditioning argument to prevent a random walk from being `’too transient'.
14:15
Drift, draft and structure: modelling evolution in a spatial continuum.
Abstract
One of the outstanding successes of mathematical population genetics is Kingman's coalescent. This process provides a simple and elegant description of the genealogical trees relating individuals in a sample of neutral genes from a panmictic population, that is, one in which every individual is equally likely to mate with every other and all individuals experience the same conditions. But real populations are not like this. Spurred on by the recent flood of DNA sequence data, an enormous industry has developed that seeks to extend Kingman's coalescent to incorporate things like variable population size, natural selection and spatial and genetic structure. But a satisfactory approach to populations evolving in a spatial continuum has proved elusive. In this talk we describe the effects of some of these biologically important phenomena on the genealogical trees before describing a new approach (joint work with Nick Barton, IST Austria) to modelling the evolution of populations distributed in a spatial continuum.
15:45
Brownian Entropic Repulsion
Abstract
We consider one-dimensional Brownian motion conditioned (in a suitable
sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.5860... as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). I will also describe other conditionings of Brownian motion in which this principle of entropic repulsion manifests itself.
Joint work with Itai Benjamini.
14:10
t2/3-scaling of current variance in interacting particle systems
Abstract
Particle current is the net number of particles that pass an observer who moves with a deterministic velocity V. Its fluctuations in time-stationary interacting particle systems are nontrivial and draw serious attention. It has been known for a while that in most models diffusive scaling and the corresponding Central Limit Theorem hold for this quantity. However, such normal fluctuations disappear for a particular value of V, called the characteristic speed.
For this velocity value, the correct scaling of particle current fluctuations was shown to be t1/3 and the limit distribution was also identified by K. Johansson in 2000 and later by P. L. Ferrari and H. Spohn in 2006. These results use heavy combinatorial and analytic tools, and their application is limited to a few particular models, one of which is the totally asymmetric simple exclusion process (TASEP). I will explain a purely probabilistic, more robust approach that provides the t2/3-scaling of current variance, but not the limit distribution, in (non-totally) asymmetric simple exclusion (ASEP) and some other particle systems. I will also point out a key feature of the models which allows the proof of such universal behaviour.
Joint work with Júlia Komjáthy and Timo Seppälläinen)
15:45
Confined Lagrangian SDES with Eulerian Dirichlet conditions
Abstract
We construct a kinetic SDE in the state variables (position,velocity), where the spatial dependency in the drift term of the velocity equation is a conditional expectation with respect to the position. Those systems are introduced in fluid mechanic by S. B. Pope and are used in the simulation of complex turbulent flows. Such simulation approach is known as Probability Density Function (PDF) method .
We construct a PDF method applied to a dynamical downscaling problem to generate fine scale wind : we consider a bounded domain D. A weather prediction model solves the wind field at the boundary of D (coarse resolution). In D, we adapt a Lagrangian model to the atmospheric flow description and we construct a particles algorithm to solve it (fine resolution).
In the second part of the talk, we give a (partial) construction of a Lagrangian SDE confined in a given domain and such that the corresponding Eulerian velocity at the boundary is given. This problem is related to stochastic impact problem and existence of trace at the boundary for the McKean-Vlasov equations with specular boundary condition
14:15
Cameron-Martin Theorem for Riemannian Manifolds
Abstract
The Cameron-Martin theorem is a fundamental result in stochastic analysis. We will show that the Wiener measure on a geometrically and stochastically complete Riemannian manifold is quasi-invariant. This is a complete a complete generalization of the classical Cameron-Martin theorem for Euclidean space to Riemannian manifolds. We do not impose any curvature growth conditions.
15:45
Gaussian fluctuations for Plancherel partitions
Abstract
The limit shape of Young diagrams under the Plancherel measure was found by Vershik & Kerov (1977) and Logan & Shepp (1977). We obtain a central limit theorem for fluctuations of Young diagrams in the bulk of the partition 'spectrum'. More specifically, we prove that, under a suitable (logarithmic) normalization, the corresponding random process converges (in the FDD sense) to a Gaussian process with independent values. We also discuss the link with an earlier result by Kerov (1993) on the convergence to a generalized Gaussian process. The proof is based on the Poissonization of the Plancherel measure and an application of a general central limit theorem for determinantal point processes (joint work with Zhonggen Su).