Forthcoming events in this series


Mon, 15 Feb 2010
15:45
Eagle House

THE BEHAVIOR OF THE CURRENT FLUCTUATION FIELD IN WEAKLY ASYMMETRIC EXCLUSION

Sigurd Assing
(University of Warwick)
Abstract

We consider the time average of the (renormalized) current fluctuation field in one-dimensional weakly asymmetric simple exclusion.

The asymmetry is chosen to be weak enough such that the density fluctuation field still converges in law with respect to diffusive scaling. Remark that the density fluctuation field would evolve on a slower time scale if the asymmetry is too strong and that then the current fluctuations would have something to do with the Tracy-Widom distribution. However, the asymmetry is also chosen to be strong enough such that the density fluctuation field does not converge in law to an infinite-dimensional Ornstein-Uhlenbeck process, that is something non-trivial is happening.

We will, at first, motivate why studying the time average of the current fluctuation field helps to understand the structure of this non-trivial scaling limit of the density fluctuation field and, second, show how one can replace the current fluctuation field by a certain functional of the density fluctuation field under the time average. The latter result provides further evidence for the common belief that the scaling limit of the density fluctuation field approximates the solution of a Burgers-type equation

Mon, 15 Feb 2010
14:15
Eagle House

Fractional Stockastic Fields and Wavelet Methods

Antoine Ayache
(University of Lille)
Abstract

Abstract: The goal of this talk is to discuss threeproblems on fractional and related stochastic fields, in which wavelet methodshave turned out to be quite useful.

  The first problemconsists in constructing optimal random series representations of Lévyfractional Brownian field; by optimal we mean that the tails of the seriesconverge to zero as fast as possible i.e. at the same rate as the l-numbers.Note in passing that there are close connections between the l-numbers of aGaussian field and its small balls probabilities behavior.

  The secondproblem concerns a uniform result on the local Hölder regularity (the pointwiseHölder exponent) of multifractional Brownian motion; by uniform we mean thatthe result is satisfied on an event with probability 1 which does not depend onthe location.

  The third problemconsists in showing that multivariate multifractional Brownian motion satisfiesthe local nondeterminism property. Roughly speaking, this property, which wasintroduced by Berman, means that the increments are asymtotically independentand it allows to extend to general Gaussian fields many results on the localtimes of Brownian motion.

 

Mon, 08 Feb 2010
15:45
Eagle House

'Quenched Exit Estimates and Ballisticity Conditions for Higher-Dimensional Random Walk in Random Environment'

Alexander Drewitz
(Technical University of Berlin)
Abstract

 

ABSTRACT "We give a short introduction to randomwalk in random environment

(RWRE) and some open problems connected to RWRE.

Then, in dimension larger than or equal to four we studyballisticity conditions and their interrelations. For this purpose, we dealwith a certain class of ballisticity conditions introduced by Sznitman anddenoted $(T)_\gamma.$ It is known that they imply a ballistic behaviour of theRWRE and are equivalent for parameters $\gamma \in (\gamma_d, 1),$ where$\gamma_d$ is a constant depending on the dimension and taking values in theinterval $(0.366, 0.388).$ The conditions $(T)_\gamma$ are tightly interwovenwith quenched exit estimates.

As a first main result we show that the conditions are infact equivalent for all parameters $\gamma \in (0,1).$ As a second main result,we prove a conjecture by Sznitman concerning quenched exit estimates.

Both results are based on techniques developed in a paperon slowdowns of RWRE by Noam Berger.

 

(joint work with Alejandro Ram\'{i}rez)"

 

Mon, 08 Feb 2010
14:15
Eagle House

A class of Weakly Interactive Particle Systems and SPDEs

Lei Jin
(University of Oxford)
Abstract

We investigate a class of weakly interactive particle systems with absorption. We assume that the coefficients in our model depend on an "absorbing" factor and prove the existence and uniqueness of the proposed model. Then we investigate the convergence of the empirical measure of the particle system and derive the Stochastic PDE satisfied by the density of the limit empirical measure. This result can be applied to credit modelling. This is a joint work with Dr. Ben Hambly.

Mon, 01 Feb 2010
15:45
Eagle House

Wigner random matrices with weak moment conditions

Kurt Johansson
(Matematiske Institutionen Stockholm)
Abstract

Abstract: There has in the last year been much progresson the universality problem for the spectra of a Wigner random matrices, i.e.Hermitian or symmetric random matrices with independent elements. I will givesome background on this problem and also discuss what can be said when we onlyassume a few moments of the matrix elements to be finite.

 

Mon, 01 Feb 2010
14:15
Eagle House

Scaling Limits and Universality in Disordered Copolimer Models

Giambattista Giamcomin
(University of Paris Diderot)
Abstract

A copolymer is a chain of repetitive units (monomers) that

are almost identical, but they differ in their degree of

affinity for certain solvents. This difference leads to striking

phenomena when the polymer fluctuates

in a non-homogeneous medium, for example made up by two solvents

separated by an interface.

One may observe, for exmple, the localization of the polymer at the

interface between the two solvents.

Much of the literature on the subject focuses on the most basic model

based on the simple symmetric random walk on the integers, but

E. Bolthausen and F. den Hollander (AP 1997) pointed out

the convergence of the (rescaled) free energy of such a discrete model

toward

the free energy of a continuum model, based on Brownian motion,

in the limit of weak polymer-solvent coupling. This result is

remarkable because it strongly suggests

a universal feature for copolymer models. In this work we prove that

this is indeed the case. More precisely,

we determine the weak coupling limit for a general class of discrete

copolymer models, obtaining as limits

a one-parameter (alpha in (0,1)) family of continuum models, based on

alpha-stable regenerative sets.

Mon, 25 Jan 2010
15:45
Eagle House

Stochastic nonlinear Schrodinger equations and modulation of solitary waves

Anne De Bouard
(Ecole Polytechnique)
Abstract

In this talk, we will focus on the asymptotic behavior in time of the solution of a model equation for Bose-Einstein condensation, in the case where the trapping potential varies randomly in time.

The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude tends to zero.

The initial condition is a standing wave solution of the unperturbed equation We prove that up to times of the order of the inverse squared amplitude the solution decomposes into the sum of a randomly modulatedmodulation parameters.

In addition, we show that the first order of the remainder, as the noise amplitude goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale, as the frequency of the standing wave of the deterministic equation tends to its minimal value.

Mon, 25 Jan 2010
14:15
Eagle House

On Rough Path Constructions for Fractional Brownian Motion

Samy Tindel
(Universite henri Poincare (Nancy))
Abstract

Abstract: In this talk we will review some recentadvances in order to construct geometric or weakly geometric rough paths abovea multidimensional fractional Brownian motion, with a special emphasis on thecase of a Hurst parameter H<1/4. In this context, the natural piecewiselinear approximation procedure of Coutin and Qian does not converge anymore,and a less physical method has to be adopted. We shall detail some steps ofthis construction for the simplest case of the Levy area.

 

Mon, 18 Jan 2010
15:35
Eagle House

TBA

Pierre Tarres
(University of Oxford)
Abstract

TBA

Mon, 18 Jan 2010
14:15
Eagle House

Symetries and Independence in Noncommutative Probability

Claus Koestler
(Carlton University Ottawa)
Abstract

The subject of distributional symmetries and invarianceprinciples yields deep results on the structure of the underlying randomobjects. So it is of general interest to investigate if such an approach turnsout to be also fruitful in the quantum world. My talk will report recentprogress in the transfer of de Finetti's pioneering work to noncommutativeprobability. More precisely, an infinite sequence of random variables isexchangeable if its distribution is invariant under finite permutations. The deFinetti theorem characterizes such sequences as conditionally i.i.d. Recentlywe have proven a noncommutative analogue of this celebrated theorem. We willdiscuss the new symmetries `braidability'

and `quantum exchangeability' emerging from our approach.In particular, this brings our approach in close contact with Jones' subfactortheory and Voiculescu's free probability. Finally we will address that ourmethods give a new proof of Thoma's theorem on the general form of charactersof the infinite symmetric group. Quite surprisingly, Thoma's theorem turns outto be the spectral analysis of the tail algebra coming from a certainexchangeable sequence of transpositions. This is in part joint work with RolfGohm and Roland Speicher.

 

REFERENCES:

[1] C. Koestler. A noncommutative extended de Finettitheorem 258 (2010) 1073-1120.

[2] R. Gohm & C. Kostler. Noncommutativeindependence from the braid group $\mathbb{B}_\infty$. Commun. Math. Phys.289(2) (2009), 435-482.

[3] C. Koestler & R. Speicher. A noncommutative deFinetti theorem:

Invariance under quantum permutations is equivalent tofreeness with amalgamation. Commun. Math. Phys. 291(2) (2009), 473-490.

[4] R. Gohm & C. Koestler: An application ofexchangeability to the symmetric group $\mathbb{S}_\infty$. Preprint.

Mon, 30 Nov 2009
15:45
Eagle House

Hybrid Brownian motion: a model for price feedback and volatility explosion

William Shaw
(King’s College London)
Abstract

Numerous studies of asset returns reveal excess kurtosis as fat tails, often characterized by power law behaviour. A hybrid of arithmetic and geometric Brownian motion is proposed as a model for short-term asset returns, and its equilibrium and dynamical properties explored. Some exact solutions for the time-dependent behaviour are given, and we demonstrate the existence of a stochastic bifurcation between mean- reverting and momentum-dominated markets. The consequences for risk management will be discussed.

Mon, 30 Nov 2009
14:15
Eagle House

TBA

Bohdan Maslowski
(Academy of Sciences of Czech Republic)
Mon, 16 Nov 2009
15:45
Eagle House

Some invariance principles for functionals of Lévy processes

Loic Chaumont
(Université d’Angers)
Abstract

We prove that when a sequence of Lévy processes $X(n)$ or a normed sequence of random walks $S(n)$ converges a.s. on the Skorokhod space toward a Lévy process $X$, the sequence $L(n)$ of local times at the supremum of $X(n)$ converges uniformly on compact sets in probability toward the local time at the supremum of $X$. A consequence of this result is that the sequence of (quadrivariate) ladder processes (both ascending and

descending) converges jointly in law towards the ladder processes of $X$. As an application, we show that in general, the sequence $S(n)$ conditioned to stay positive converges weakly, jointly with its local time at the future minimum, towards the corresponding functional for the limiting process $X$. From this we deduce an invariance principle for the meander which extends known results for the case of attraction to a stable law.

Mon, 09 Nov 2009
15:45
Eagle House

TBA

Stanislav Smirnov
(Université de Genève)
Mon, 09 Nov 2009
14:15
Eagle House

TBA

Tom Cass
(Oxford)
Mon, 26 Oct 2009
15:45
Eagle House

TBA

Alan Hammond
(New York University)
Abstract

Condition supercritical percolation so that the origin is enclosed by a dual circuit whose interior traps an area of n^2.

The Wulff problem concerns the shape of the circuit. We study the circuit's fluctuation. A well-known measure of this fluctuation is maximum local roughness (MLR), which is the greatest distance from a point on the circuit to the boundary of circuit's convex hull. Another is maximum facet length (MFL), the length of the longest line segment of which this convex hull is comprised.

In a forthcoming article, I will prove that

for various models including supercritical percolation, under the conditioned measure,

MLR = \Theta(n^{1/3}\log n)^{2/3}) and MFL = \Theta(n^{2/3}(log n)^{1/3}).

An important tool is a result establishing the profusion of regeneration sites in the circuit boundary. The talk will focus on deriving the main results with this tool