Forthcoming events in this series


Mon, 01 Feb 2010
14:15
Eagle House

Scaling Limits and Universality in Disordered Copolimer Models

Giambattista Giamcomin
(University of Paris Diderot)
Abstract

A copolymer is a chain of repetitive units (monomers) that

are almost identical, but they differ in their degree of

affinity for certain solvents. This difference leads to striking

phenomena when the polymer fluctuates

in a non-homogeneous medium, for example made up by two solvents

separated by an interface.

One may observe, for exmple, the localization of the polymer at the

interface between the two solvents.

Much of the literature on the subject focuses on the most basic model

based on the simple symmetric random walk on the integers, but

E. Bolthausen and F. den Hollander (AP 1997) pointed out

the convergence of the (rescaled) free energy of such a discrete model

toward

the free energy of a continuum model, based on Brownian motion,

in the limit of weak polymer-solvent coupling. This result is

remarkable because it strongly suggests

a universal feature for copolymer models. In this work we prove that

this is indeed the case. More precisely,

we determine the weak coupling limit for a general class of discrete

copolymer models, obtaining as limits

a one-parameter (alpha in (0,1)) family of continuum models, based on

alpha-stable regenerative sets.

Mon, 25 Jan 2010
15:45
Eagle House

Stochastic nonlinear Schrodinger equations and modulation of solitary waves

Anne De Bouard
(Ecole Polytechnique)
Abstract

In this talk, we will focus on the asymptotic behavior in time of the solution of a model equation for Bose-Einstein condensation, in the case where the trapping potential varies randomly in time.

The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude tends to zero.

The initial condition is a standing wave solution of the unperturbed equation We prove that up to times of the order of the inverse squared amplitude the solution decomposes into the sum of a randomly modulatedmodulation parameters.

In addition, we show that the first order of the remainder, as the noise amplitude goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale, as the frequency of the standing wave of the deterministic equation tends to its minimal value.

Mon, 25 Jan 2010
14:15
Eagle House

On Rough Path Constructions for Fractional Brownian Motion

Samy Tindel
(Universite henri Poincare (Nancy))
Abstract

Abstract: In this talk we will review some recentadvances in order to construct geometric or weakly geometric rough paths abovea multidimensional fractional Brownian motion, with a special emphasis on thecase of a Hurst parameter H<1/4. In this context, the natural piecewiselinear approximation procedure of Coutin and Qian does not converge anymore,and a less physical method has to be adopted. We shall detail some steps ofthis construction for the simplest case of the Levy area.

 

Mon, 18 Jan 2010
15:35
Eagle House

TBA

Pierre Tarres
(University of Oxford)
Abstract

TBA

Mon, 18 Jan 2010
14:15
Eagle House

Symetries and Independence in Noncommutative Probability

Claus Koestler
(Carlton University Ottawa)
Abstract

The subject of distributional symmetries and invarianceprinciples yields deep results on the structure of the underlying randomobjects. So it is of general interest to investigate if such an approach turnsout to be also fruitful in the quantum world. My talk will report recentprogress in the transfer of de Finetti's pioneering work to noncommutativeprobability. More precisely, an infinite sequence of random variables isexchangeable if its distribution is invariant under finite permutations. The deFinetti theorem characterizes such sequences as conditionally i.i.d. Recentlywe have proven a noncommutative analogue of this celebrated theorem. We willdiscuss the new symmetries `braidability'

and `quantum exchangeability' emerging from our approach.In particular, this brings our approach in close contact with Jones' subfactortheory and Voiculescu's free probability. Finally we will address that ourmethods give a new proof of Thoma's theorem on the general form of charactersof the infinite symmetric group. Quite surprisingly, Thoma's theorem turns outto be the spectral analysis of the tail algebra coming from a certainexchangeable sequence of transpositions. This is in part joint work with RolfGohm and Roland Speicher.

 

REFERENCES:

[1] C. Koestler. A noncommutative extended de Finettitheorem 258 (2010) 1073-1120.

[2] R. Gohm & C. Kostler. Noncommutativeindependence from the braid group $\mathbb{B}_\infty$. Commun. Math. Phys.289(2) (2009), 435-482.

[3] C. Koestler & R. Speicher. A noncommutative deFinetti theorem:

Invariance under quantum permutations is equivalent tofreeness with amalgamation. Commun. Math. Phys. 291(2) (2009), 473-490.

[4] R. Gohm & C. Koestler: An application ofexchangeability to the symmetric group $\mathbb{S}_\infty$. Preprint.

Mon, 30 Nov 2009
15:45
Eagle House

Hybrid Brownian motion: a model for price feedback and volatility explosion

William Shaw
(King’s College London)
Abstract

Numerous studies of asset returns reveal excess kurtosis as fat tails, often characterized by power law behaviour. A hybrid of arithmetic and geometric Brownian motion is proposed as a model for short-term asset returns, and its equilibrium and dynamical properties explored. Some exact solutions for the time-dependent behaviour are given, and we demonstrate the existence of a stochastic bifurcation between mean- reverting and momentum-dominated markets. The consequences for risk management will be discussed.

Mon, 30 Nov 2009
14:15
Eagle House

TBA

Bohdan Maslowski
(Academy of Sciences of Czech Republic)
Mon, 16 Nov 2009
15:45
Eagle House

Some invariance principles for functionals of Lévy processes

Loic Chaumont
(Université d’Angers)
Abstract

We prove that when a sequence of Lévy processes $X(n)$ or a normed sequence of random walks $S(n)$ converges a.s. on the Skorokhod space toward a Lévy process $X$, the sequence $L(n)$ of local times at the supremum of $X(n)$ converges uniformly on compact sets in probability toward the local time at the supremum of $X$. A consequence of this result is that the sequence of (quadrivariate) ladder processes (both ascending and

descending) converges jointly in law towards the ladder processes of $X$. As an application, we show that in general, the sequence $S(n)$ conditioned to stay positive converges weakly, jointly with its local time at the future minimum, towards the corresponding functional for the limiting process $X$. From this we deduce an invariance principle for the meander which extends known results for the case of attraction to a stable law.

Mon, 09 Nov 2009
15:45
Eagle House

TBA

Stanislav Smirnov
(Université de Genève)
Mon, 09 Nov 2009
14:15
Eagle House

TBA

Tom Cass
(Oxford)
Mon, 26 Oct 2009
15:45
Eagle House

TBA

Alan Hammond
(New York University)
Abstract

Condition supercritical percolation so that the origin is enclosed by a dual circuit whose interior traps an area of n^2.

The Wulff problem concerns the shape of the circuit. We study the circuit's fluctuation. A well-known measure of this fluctuation is maximum local roughness (MLR), which is the greatest distance from a point on the circuit to the boundary of circuit's convex hull. Another is maximum facet length (MFL), the length of the longest line segment of which this convex hull is comprised.

In a forthcoming article, I will prove that

for various models including supercritical percolation, under the conditioned measure,

MLR = \Theta(n^{1/3}\log n)^{2/3}) and MFL = \Theta(n^{2/3}(log n)^{1/3}).

An important tool is a result establishing the profusion of regeneration sites in the circuit boundary. The talk will focus on deriving the main results with this tool

Mon, 12 Oct 2009
14:15
Oxford-Man Institute

The Single Ring Theorum

Alice Guionnet
(Ecole Normale Superieure, Lyons)
Mon, 15 Jun 2009
15:45
Oxford-Man Institute

Rough differential equations with interaction

Dr Tom Cass
(Oxford)
Abstract

We consider the analysis for a class of random differential equations driven by rough noise and with a trajectory that is influenced by its own law. Having described the mathematical setup with great precision, we will illustrate how such equations arise naturally as the limits of a cloud of interacting particles. Finally, we will provide examples to show the ubiquity of such systems across a range of physical and economic phenomena and hint at possible extensions.

Mon, 15 Jun 2009
14:15
Oxford-Man Institute

Diffusion Limits of MCMC Methods

Professor Andrew Stuart
(University of Warwick)
Abstract

Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying efficiency.

In particular they facilitate precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have only been proved for target measures with a product structure, severely limiting their applicability to real applications. The purpose of this talk is to desribe a research program aimed at identifying diffusion limits for a class of naturally occuring problems, found by finite dimensional approximation of measures on a Hilbert space which are absolutely continuous with respect to a Gaussian reference measure.

The diffusion limit to a Hilbert space valued SDE (or SPDE) is proved.

Joint work with Natesh Pillai (Warwick) and Jonathan Mattingly (Duke)

Mon, 08 Jun 2009
15:45
Oxford-Man Institute

Quantum Networks and Classical Self-Avoiding Random Walks

Prof John Cardy
(Oxford)
Abstract

In a quantum network model, unitary matrices are assigned to each edge and node of a graph.  The quantum amplitude for a particle to propagate from node A to node B is the sum over all random walks (Feynman paths) from A to B, each walk being weighted by the ordered product of matrices along the path.  In most cases these models are too difficult to solve analytically, but I shall argue that when the matrices are random elements of SU("), independently drawn from the invariant measure on that group, then averages of these quantum amplitudes are equal to the probability that a certain kind of self-avoiding *classical* random walk reaches B when started at A.  This leads to various conjectures about the generic behaviour of such network models on regular lattices in two and three dimensions.

Mon, 08 Jun 2009
14:15
Oxford-Man Institute

TBA

Jean-D Deuschel