Forthcoming events in this series


Mon, 26 May 2008
14:15
Oxford-Man Institute

The McKean stochastic game driven by a spectrally negative Levy process

Dr Erik Baurdoux
(Dept of Statistics London School of Economics)
Abstract

The McKean stochastic game (MSG) is a two-player version of the perpetual American put option. The MSG consists of two agents and a certain payoff function of an underlying stochastic process. One agent (the seller) is looking for a strategy (stopping time) which minimises the expected pay-off, while the other agent (the buyer) tries to maximise this quantity.

For Brownian motion one can find the value of the MSG and the optimal stopping times by solving a free boundary value problem. For a Lévy process with jumps the corresponding free boundary problem is more difficult to solve directly and instead we use fluctuation theory to find the solution of the MSG driven by a Lévy process with no positive jumps. One interesting aspect is that the optimal stopping region for the minimiser "thickens" from a point to an interval in the presence of jumps. This talk is based on joint work with Andreas Kyprianou (University of Bath).

Mon, 19 May 2008
15:45
Oxford-Man Institute

From an analogue of Ewens' measure on the unitary group to the circular Jacobi ensemble

Prof. Ashkan Nikeghbali
(University of Zurich)
Abstract

In the first part of the talk, we fit the Hua-Pickrell measure (which is a two parameters deformation of the Haar measure) on the unitary group and the Ewens measure on the symmetric group in a same framework. We shall see that in the unitary case, the eigenvalues follow a determinantal point process with explicit hypergeometric kernels. We also study asymptotics of these kernels. The techniques used rely upon splitting of the Haar measure and sampling techniques. In the second part of the talk, we provide a matrix model for the circular Jacobi ensemble, which is the sampling used for the Hua-Pickrell measure but this time on Dyson's circular ensembles. In this case, we use the theory of orthogonal polynomials on the unit circle. In particular we prove that when the parameter of the sampling grows with n, both the spectral measure and the empirical spectral measure converge weakly in probability to a non-trivial measure supported only by one piece of the unit circle.

Mon, 19 May 2008
14:15
Oxford-Man Institute

Local approximation and conditioning on Dawson-Watanabe superprocesses

Prof Olav Kallenberg
(Auburn University)
Abstract

We consider a critical, measure-valued branching diffusion ξ in Rd, where the branching is continuous and the spatial motion is given by the heat flow. For d ≥ 2 and fixed t > 0, ξt is known to be an a.s. singular random measure of Hasudorff dimension 2. We explain how it can be approximated by Lebesgue measure on ε-neighbourhoods of the support. Next we show how ξt can be approximated in total variation near n points, and how the associated Palm distributions arise in the limit from elementary conditioning. Finally we hope to explan the duality between moment and Palm measures, and to show how the latter can be described in terms of discrete “Palm trees.”

Mon, 12 May 2008
15:45
Oxford-Man Institute

New solutions and uniqueness results for the variational version of Euler incompressible equations

Dr Filippo Santambrogio
(Paris, Dauphine)
Abstract

Euler equations for incompressible fludis describe the evolution of the divergence-free velocity of a non-viscous fluid (when viscosity is present, we have the well-known Navier-Stokes equations). V. Arnold discovered that they correspond to geodesic equations in the space of volume-preserving diffeomorphisms but several exemples show that it is not always possible to solve the corresponding variational problems inducing minimal energy displacements. A solvable relaxed version, in a non-deterministic setting (measures on the path space, with possible splitting of the particles), has been introduced by Y. Brenier who intensively studied the problem. Together with M. Bernot and A. Figalli we founded new solutions and characterization results. In the talk I'll present the most interesting features of the problem and of its solutions.

Mon, 12 May 2008
14:15
Oxford-Man Institute

Multi-level Monte Carlo

Prof. Des Higham
(Strathclyde)
Abstract

Mike Giles recently came up with a very general technique that improves the fundamental complexity of Monte Carlo simulation in the context where stochastic differential equations are simulated numerically. I will discuss some work with Mike Giles and Xuerong Mao that extends the theoretical support for this approach to the case of financial options without globally Lipschitz payoff functions. I will also suggest other application areas where this multi-level approach might prove valuable, including stochastic computation in cell biology.

Mon, 05 May 2008
15:45
Oxford-Man Institute

TBA

Prof. Dominique Bakry
(Université de Toulouse)
Mon, 05 May 2008
14:15
Oxford-Man Institute

Solving a Backward SDE with the Cubature method

Mr Konstantinos Manolarakis
Abstract

Probabilistic methods for the solution of Backward Stochastic Differential Equations (BSDE) provide us with a new approach to the problem of approximating the solution of a semi-linear PDE. Utilizing on the Markovian nature of these BSDE’s we show how one may consider the problem of numerical solutions to BSDEs within the area of weak approximations of diffusions. To emphasize this point, we suggest an algorithm based on the Cubature method on Wiener space of Lyons - Victoir. Instead of using standard discretization techniques of BSDE’s, we choose to work with the actual flow. This allows to take advantage of estimates on the derivatives of the solution of the associated semi-linear PDE and hence, we recover satisfactory convergence estimates.

Mon, 28 Apr 2008
15:45
Oxford-Man Institute

Some results concerning the q-optimal martingale measure

Dr Sotirios Sabanis
(University of Edinburgh)
Abstract

An important and challenging problem in mathematical finance is how to choose a pricing measure in an incomplete market, i.e. how to find a probability measure under which expected payoffs are calculated and fair option prices are derived under some notion of optimality.

The notion of q-optimality is linked to the unique equivalent martingale measure (EMM) with minimal q-moment (if q > 1) or minimal relative entropy (if q=1). Hobson's (2004) approach to identifying the q-optimal measure (through a so-called fundamental equation) suggests a relaxation of an essential condition appearing in Delbaen & Schachermayer (1996). This condition states that for the case q=2, the Radon-Nikodym process, whose last element is the density of the candidate measure, is a uniformly integrable martingale with respect to any EMM with a bounded second moment. Hobson (2004) alleges that it suffices to show that the above is true only with respect to the candidate measure itself and extrapolates for the case q>1. Cerny & Kallsen (2008) however presented a counterexample (for q=2) which demonstrates that the above relaxation does not hold in general.

The speaker will present the general form of the q-optimal measure following the approach of Delbaen & Schachermayer (1994) and prove its existence under mild conditions. Moreover, in the light of the counterexample in Cerny & Kallsen (2008) concerning Hobson's (2004) approach, necessary and sufficient conditions will be presented in order to determine when a candidate measure is the q-optimal measure.

Mon, 28 Apr 2008
14:15
Oxford-Man Institute

Malliavin calculus and rough paths

Dr Thomas Cass
(Oxford)
Abstract

We present the ideas of Malliavin calculus in the context of rough differential equations (RDEs) driven by Gaussian signals. We then prove an analogue of Hörmander's theorem for this set-up, finishing with the conclusion that, for positive times, a solution to an RDE driven by Gaussian noise will have a density with respect to Lebesgue measure under Hörmander's conditions on the vector fields.

Mon, 21 Apr 2008
15:45
Oxford-Man Institute

The Navier Stokes equation and the Absolute Boundary condition

Mr. Dan Osborne
(Oxford)
Abstract

Let u be a vector field on a bounded domain in R^3. The absolute boundary condition states that both the normal part of u and the tangential part of curl(u) vanish on the boundary. After motivating the use of this condition in the context of the Navier Stokes equation, we prove local (in time) existence with this boundary behaviour. This work is together with Dr. Z. Qian and Prof. G. Q. Chen, Northwestern University.

Mon, 21 Apr 2008
14:15
Oxford-Man Institute

Spectrum of large random graphs

Dr Charles Bordenave
(Université de Toulouse)
Abstract

We will analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. These results will be applied to graphs converging locally to trees and derive a new formula for the Stieljes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and graphs with prescribed degree distribution. We will sketch examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices. If time allows, we will discuss related open problems. This is a joint work with Marc Lelarge (INRIA & Ecole Normale Supérieure).

Mon, 03 Mar 2008
14:45
Oxford-Man Institute

Some new results on 1-d self-repelling random walks

Prof. Balint Toth
(Budapest)
Abstract

I will present two new results in the context of the title. Both are joint work with B. Veto.

1. In earlier work a limit theorem with $t^{2/3}$ scaling was established for a class of self repelling random walks on $\mathbb Z$ with long memory, where the self-interaction was defined in terms of the local time spent on unoriented edges. For combinatorial reasons this proof was not extendable to the natural case when the self-repellence is defined in trems of local time on sites. Now we prove a similar result for a *continuous time* random walk on $\mathbb Z$, with self-repellence defined in terms of local time on sites.

2. Defining the self-repelling mechanism in terms of the local time on *oriented edges* results in totally different asymptotic behaviour than the unoriented cases. We prove limit theorems for this random walk with long memory.

Mon, 03 Mar 2008
13:15
Oxford-Man Institute

The allele frequency spectrum associated with the Bolthausen-Sznitman coalescent

Dr Christina Goldschmidt
(Department of Statistics, Oxford)
Abstract

I will take as my starting point a problem which is classical in

population genetics: we wish to understand the distribution of numbers

of individuals in a population who carry different alleles of a

certain gene. We imagine a sample of size n from a population in

which individuals are subject to neutral mutation at a certain

constant rate. Every mutation gives rise to a completely new type.

The genealogy of the sample is modelled by a coalescent process and we

imagine the mutations as a Poisson process of marks along the

coalescent tree. The allelic partition is obtained by tracing back to

the most recent mutation for each individual and grouping together

individuals whose most recent mutations are the same. The number of

blocks of each of the different possible sizes in this partition is

called the allele frequency spectrum. Recently, there has been much

interest in this problem when the underlying coalescent process is a

so-called Lambda-coalescent (even when this is not a biologically

``reasonable'' model) because the allelic partition is a nice example

of an exchangeable random partition. In this talk, I will describe

the asymptotics (as n tends to infinity) of the allele frequency

spectrum when the coalescent process is a particular Lambda-coalescent

which was introduced by Bolthausen and Sznitman. It turns out that

the frequency spectrum scales in a rather unusual way, and that we

need somewhat unusual tools in order to tackle it.

This is joint work with Anne-Laure Basdevant (Toulouse III).

Mon, 25 Feb 2008
14:45
Oxford-Man Institute

Linearly edge-reinforced random walks, part II

Dr Franz Merkl
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 25 Feb 2008
13:15
Oxford-Man Institute

Linearly edge-reinforced random walks, part I

Dr Silke Rolles
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 11 Feb 2008
14:45
Oxford-Man Institute

Stochastic competition models from ecology to society

Prof. Yuri Kondratiev
(University of Reading)
Abstract

We describe individual based continuous models of random evolutions and discuss some effects of competitions in these models. The range of applications includes models of spatial ecology, genetic mutation-selection models and particular socio-economic systems. The main aim of our presentation is to establish links between local characteristics of considered models and their macroscopic behaviour

Mon, 11 Feb 2008
13:15
Oxford-Man Institute

Constrained Non-smooth Utility Maximization without Quadratic Inf-convolution

Dr Harry Zheng
(London)
Abstract

In this talk we revisit the setting of Bouchard, Touzi, and Zeghal (2004).

For an incomplete market and a non-smooth utility function U defined on the whole real line we study the problem:

sup E [U(XTx,θ – B)]

θΘ(S)

Here B is a bounded contingent claim and Xx,θ represents the wealth process with initial capital x generated by portfolio θ. We study the case when the portfolios are constrained in a closed convex cone.

For the case without constraints and with a smooth utility function the solution method is to approximate the utility function and look at the same problem on a bounded negative domain. However, when one attempts to solve this bounded domain problem for a non-smooth utility function, the standard methods of proof cannot be applied. To circumvent this difficulty the idea of quadratic inf-convolution was introduced in Bouchard, Touzi, and Zeghal (2004). This method is mathematically appealing but leads to lengthy and technical proofs.

We will show that despite the presence of constraints, the dependence on quadratic inf-convolution can be removed. We will also show the existence of a constrained replicating portfolio for the optimal terminal wealth when the filtration is generated by a Brownian motion. This provides a natural generalisation of the results of Karatzas and Shreve (1998) to the whole real line.

Mon, 04 Feb 2008
14:45
Oxford-Man Institute

Asymptotics of killed Markov processes, with applications to the biodemography of ageing

Dr David Steinsaltz
(Oxford)
Abstract

The convergence of Markov processes to stationary distributions is a basic topic of introductory courses in stochastic processes, and the theory has been thoroughly developed. What happens when we add killing to the process? The process as such will not converge in distribution, but the survivors may; that is, the distribution of the process, conditioned on survival up to time t, converges to a "quasistationary distribution" as t goes to infinity.

This talk presents recent work with Steve Evans, proving an analogue of the transience-recurrence dichotomy for killed one-dimensional diffusions. Under fairly general conditions, a killed one-dimensional diffusion conditioned to have survived up to time t either escapes to infinity almost surely (meaning that the probability of finding it in any bounded set goes to 0) or it converges to the quasistationary distribution, whose density is given by the top eigenfunction of the adjoint generator.

These theorems arose in solving part of a longstanding problem in biological theories of ageing, and then turned out to play a key role in a very different problem in population biology, the effect of unequal damage inheritance on population growth rates.

Mon, 04 Feb 2008
13:15
Oxford-Man Institute

A Malliavin calculus approach to a general maximum principle for stochastic control of jump diffusions

Prof. Bernt Oksendal
(Universitetet i Oslo)
Abstract

The classical maximum principle for optimal control of solutions of stochastic differential equations (developed by Pontryagin (deterministic case), Bismut, Bensoussan, Haussmann and others), assumes that the system is Markovian and that the controller has access to full, updated information about the system at all times. The classical solution method involves an adjoint process defined as the solution of a backward stochastic differential equation, which is often difficult to solve.

We apply Malliavin calculus for Lévy processes to obtain a generalized maximum principle valid for non-Markovian systems and with (possibly) only partial information available for the controller. The backward stochastic differential equation is replaced by expressions involving the Malliavin derivatives of the quantities of the system.

The results are illustrated by some applications to finance

Mon, 28 Jan 2008
14:45
Oxford-Man Institute

The Feynman-Kac formula and related problems

Prof. Jiangang Ying
(Fudan University)
Abstract

This talk gives a survey on a series of work which I and co-authors have been doing for 10 years. I will start from the Feynman-Kac type formula for Dirichlet forms. Then a necessary and sufficient condition is given to characterize the killing transform of Markov processes. Lastly we shall discuss the regular subspaces of linear transform and answer some problems related to the Feynman-Kac formula

Mon, 28 Jan 2008
13:15
Oxford-Man Institute

Brownian paths and Representation theory

Prof. Philippe Bougerol
(Paris)
Abstract

Counting paths, or walks, is an important ingredient in the classical representation theory of compact groups. Using Brownian paths gives a new flexible and intuitive approach, which allows to extend some of this theory to the non- cristallographic case. This is joint work with P. Biane and N. O'Connell

Mon, 21 Jan 2008
14:45
Oxford-Man Institute

Isoperimetric bounds under curvature and integrability assumptions

Prof. Franck Barthe
(Toulouse)
Abstract

The Bakry Emery criterion asserts that a probability measure with a strictly positive generalized curvature satisfies a logarithmic Sobolev inequality, and by results of Bakry and Ledoux an isoperimetric inequality of Gaussian type. These results were complemented by a theorem of Wang: if the curvature is bounded from below by a negative number, then under an additional Gaussian integrability assumption, the log-Sobolev inequality is still valid.

The goal of this joint work with A. Kolesnikov is to provide an extension of Wang's theorem to other integrability assumptions. Our results also encompass a theorem of Bobkov on log-concave measures on normed spaces and allows us to deal with non-convex potentials when the convexity defect is balanced by integrability conditions. The arguments rely on optimal transportation and its connection to the entropy functional

Mon, 21 Jan 2008
13:15
Oxford-Man Institute

Accelerated finite difference schemes

Prof. Istvan Gyongy
(Edinburgh)
Abstract

Some recent joint results with N. V. Krylov on the convergence of solutions of finite difference schemes are presented.

The finite difference schemes, considered in the talk correspond to discretizations (in the space variable) of second order parabolic and of second order elliptic (possibly degenerate) equations.

Space derivatives of the solutions to the finite difference schemes are estimated, and these estimates are applied to show that the convergence of finite difference approximations for equations in the whole space can be accelerated to any given rate. This result can be applied to stochastic PDEs, in particular to the Zakai equation of nonlinear filtering, when the signal and observation noises are independent.