Forthcoming events in this series


Mon, 14 May 2018
12:45
L3

Trace Anomalies and Boundary Conformal Field Theory

Chris Herzog
(Kings College London)
Abstract



The central charges “c” and “a” in two and four dimensional conformal field theories (CFTs) have a central organizing role in our understanding of quantum field theory (QFT) more generally.  Appearing as coefficients of curvature invariants in the anomalous trace of the stress tensor, they constrain the possible relationships between QFTs under renormalization group flow.  They provide important checks for dualities between different CFTs.  They even have an important connection to a measure of quantum entanglement, the entanglement entropy.  Less well known is that additional central charges appear when there is a boundary, four new coefficients in total in three and four dimensional boundary CFTs.   While largely unstudied, these boundary charges hold out the tantalizing possibility of being as important in the classification of quantum field theory as the bulk central charges “a” and “c”.   I will show how these charges can be computed from displacement operator correlation functions.  I will also demonstrate a boundary conformal field theory in four dimensions with an exactly marginal coupling where these boundary charges depend on the marginal coupling.  The talk is based on arXiv:1707.06224, arXiv:1709.07431, as well as work to appear shortly.  

 
Mon, 07 May 2018
12:45
L3

A Ringel-Hall type construction of vertex algebras

Dominic Joyce
(Oxford)
Abstract



 Suppose A is a nice abelian category (such as coherent sheaves coh(X) on a smooth complex projective variety X, or representations mod-CQ of a quiver Q) or T is a nice triangulated category (such as D^bcoh(X) or D^bmod-CQ) over C. Let M be the moduli stack of objects in A or T. Consider the homology H_*(M) over some ring R.
  Given a little extra data on M, for which there are natural choices in our examples, I will explain how to define the structure of a graded vertex algebra on H_*(M). By a standard construction, one can then define a graded Lie algebra from the vertex algebra; roughly speaking, this is a Lie algebra structure on the homology H_*(M^{pl}) of a "projective linear” version M^{pl} of the moduli stack M.
  For example, if we take T = D^bmod-CQ, the vertex algebra H_*(M) is the lattice vertex algebra attached to the dimension vector lattice Z^{Q_0} of Q with the symmetrized intersection form. The degree zero part of the graded Lie algebra contains the associated Kac-Moody algebra.
  The construction appears to be new, but is connected with a lot of work in Geometric Representation Theory, to do with Ringel-Hall-type algebras and their representations, such as the results of Grojnowski-Nakajima on Hilbert schemes. The vertex algebra construction is enormously general, and applies in huge classes of examples. There is a differential-geometric version too.
  The question I am hoping someone in the audience will answer is this: what is the physical interpretation of these vertex algebras?
  It is in some sense an "even Calabi-Yau” construction: when applied to coh(X) or D^bcoh(X), it is most natural for X a Calabi-Yau 2-fold or Calabi-Yau 4-fold, and is essentially trivial for X a Calabi-Yau 3-fold. I discovered it when I was investigating wall-crossing for Donaldson-Thomas type invariants for Calabi-Yau 4-folds. So perhaps one should look for an explanation in the physics of Calabi-Yau 2-folds or 4-folds, with M the moduli space of boundary conditions for the associated SCFT.

 
 
Mon, 30 Apr 2018
12:45
L3

Algebraic systems biology: comparing models and data.

Heather Harrington
(Oxford)
Abstract

I will overview my research for a general math audience.

 First I will present the biological questions and motivate why systems biology needs computational algebraic biology and topological data analysis. Then I will present the mathematical methods I've developed to study these biological systems. Throughout I will provide examples.

 
 
Mon, 23 Apr 2018
12:45
L3

Duality and Generalised Duality

Matthew Buican
(QMUL)
Abstract

I will review the concept of duality in quantum systems from the 2D Ising model to superconformal field theories in higher dimensions. Using some of these latter theories, I will explain how a generalized concept of duality emerges: these are dualities not between full theories but between algebraically well-defined sub-sectors of strikingly different theories.

 
Mon, 12 Mar 2018
12:45
L6

Machine Learning, String Theory, and Geometry

Jim Halverson
(Northeastern University)
Abstract

Breakthroughs in machine learning have led to impressive results in numerous fields in recent years. I will review some of the best-known results on the computer science side, provide simple ways to think about the associated techniques, discuss possible applications in string theory, and present some applications in string theory where they already exist. One promising direction is using machine learning to generate conjectures that are then proven by humans as theorems. This method, sometimes referred to as intelligible AI, will be exemplified in an enormous ensemble of F-theory geometries that will be featured throughout the talk.

 
 
Mon, 05 Mar 2018
12:45
L3

Holographic interpretation of non-Abelian T-duals

Jesús Montero Aragon
(Oviedo)
Abstract

In this talk we will discuss non-Abelian T-duality as a solution generating technique in type II Supergravity, briefly reviewing its potential to motivate, probe or challenge classifications of supersymmetric solutions, and focusing on the open problem of providing the newly generated AdS brackgrounds with consistent dual superconformal field theories. These can be seen as renormalization fixed points of linear quivers of increasing rank. As illustrative examples, we consider the non-Abelian T-duals of AdS5xS5, the Klebanov-Witten background, and the IIA reduction of AdS4xS7, whose proposed quivers are, respectively, the four dimensional N=2 Gaiotto-Maldacena theories describing the worldvolume dynamics of D4-NS5 brane intersections, its N=1 mass deformations realized as D4-NS5-NS5’, and the three dimensional N=4 Gaiotto-Witten theories, corresponding to D3-D5-NS5. Based on 1705.09661 and 1609.09061.

 
Mon, 26 Feb 2018
12:45
L3

Heterotic Near-Horizon Geometries

Andrea Fontanella
(Surrey)
Abstract

The horizon conjecture, proved in a case by case basis, states that every supersymmetric smooth horizon admits an sl(2, R) symmetry algebra. However it is unclear how string corrections modify the statement. In this talk I will present the analysis of supersymmetric near-horizon geometries in heterotic supergravity up to two loop order in sigma model perturbation theory, and show the conditions for the horizon to admit an sl(2, R) symmetry algebra. In the second part of the talk, I shall consider the inverse problem of determining all extreme black hole solutions associated to a prescribed near-horizon geometry. I will expand the horizon fields in the radial co-ordinate, the so-called moduli, and show that the moduli must satisfy a system of elliptic PDEs, which implies that the moduli space is finite dimensional.

The talk is based on arXiv:1605.05635 [hep-th] and arXiv:1610.09949 [hep-th].

 
Mon, 19 Feb 2018
12:45
L3

The decay width of stringy hadrons

Cobi Sonnenschein
(Tel Aviv)
Abstract

I will start with briefly describing the HISH ( Holography Inspired Hadronic String) model and reviewing the fits of the spectra of mesons, baryons, glue-balls and exotic hadrons. 

I will present the determination of the hadron strong decay widths. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as $\Gamma =\frac{\pi}{2}A T L $ where T and L are the tension and length of the string and A is a dimensionless universal constant. The partial width of a given decay mode is given by $\Gamma_i/\Gamma = \Phi_i \exp(-2\pi C m_\text{sep}^2/T$ where $\Phi_i$ is a phase space factor, $m_\text{sep}$ is the mass of the "quark" and "antiquark" created at the splitting point, and C is adimensionless coefficient close to unity. I will show the fits of the theoretical results to experimental data for mesons and baryons. I will examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons $A = 0.095\pm  0.01$  is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. I will discuss the relation with string fragmentation and jet formation. I will extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia will be proposed and will be shown to reproduce the decay width of  states. The dependence of the width on spin and symmetry will be discussed. I will further apply this model to the decays of glueballs and exotic hadrons.

 

 
 
 
Mon, 12 Feb 2018
12:45
L3

Universality at large transverse spin in defect CFT

Pedro Liendo
(DESY, Hamburg)
Abstract

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.

 
Mon, 05 Feb 2018
12:45
L3

A universal geometry for heterotic vacua

Jock McOrist
(Surrey)
Abstract

I am interested in the moduli spaces of heterotic vacua. These are closely related to the moduli spaces of stable holomorphic bundles but in which the base and bundle vary simultaneously, together with additional constraints deriving from string theory. I will first summarise some pre-Brexit results we have derived. These include an explicit Kaehler metric and Kaehler potential for both the moduli space and its first cousin, the matter field space. I will secondly describe new, post-Brexit work in which these results are encased within an elegant geometry, which we call a universal heterotic geometry. Beyond compelling aesthetics, the framework is surprisingly useful giving both a concise derivation of our pre-Brexit results as well as some new results. 

 
 
Mon, 29 Jan 2018
12:45
L3

Compact G2 manifolds and the Duality between M-Theory and Heterotic String Theory

Andreas Braun
(Oxford)
Abstract

M-theory on K3 surfaces and Heterotic Strings on T^3 give rise to dual theories in 7 dimensions. Applying this duality fibre-wise is expected to connect G2 manifolds with Calabi-Yau threefolds (together with vector bundles). We make these ideas explicit for a class of G2 manifolds realized as twisted connected sums and prove the equivalence of the spectra of the dual theories. This naturally gives us examples of singular TCS G2 manifolds realizing non-abelian gauge theories with non-chiral matter.

Thu, 30 Nov 2017
17:00
L3

RG flows in 3d N=4 gauge theories

Benjamin Assel
(Cern)
Abstract

I will present a new approach to study the RG flow in 3d N=4 gauge theories, based on an analysis of the Coulomb branch of vacua. The Coulomb branch is described as a complex algebraic variety and important information about the strongly coupled fixed points of the theory can be extracted from the study of its singularities. I will use this framework to study the fixed points of U(N) and Sp(N) gauge theories with fundamental matter, revealing some surprising scenarios at low amount of matter.

 
Mon, 27 Nov 2017
12:45
L3

D-brane masses and the motivic Hodge conjecture

Albrecht Klemm
(Bonn)
Abstract

We consider the one parameter mirror families W of the Calabi-Yau 3-folds with Picard-Fuchs  equations of hypergeometric type. By mirror symmetry the  even D-brane masses of orginial Calabi-Yau manifolds M can be identified with four periods with respect to an integral symplectic basis of $H_3(W,\mathbb{Z})$ at the point of maximal unipotent monodromy. We establish that the masses of the D4 and D2 branes at the conifold are given by the two algebraically independent values of the L-function of the weight four holomorphic Hecke eigenform with eigenvalue one of $\Gamma_0(N)$. For the quintic in  $\mathbb{P}^4$ it this Hecke eigenform of $\Gamma_0(25)$ was as found by Chad Schoen.  It was discovered  by de la Ossa, Candelas and Villegas that  its  coefficients $a_p$ count the number of  solutions of  the mirror quinitic at the conifold over the finite number field $\mathbb{F}_p$ . Using the theory of periods and quasi-periods of $\Gamma_0(N)$ and the special geometry pairing on Calabi-Yau 3 folds we can fix further values in the connection matrix between the maximal unipotent monodromy point and the conifold point.  

 
 
 
 
Mon, 13 Nov 2017
12:45
L3

Chiral Algebras for four dimensional N=4 SCFT

Carlo Meneghelli
(Oxford)
Abstract


Any four dimensional N=2 superconformal field theory (SCFT) contains a subsector of local operator which is isomorphic to a two dimensional chiral algebra.  If the 4d theory possesses N= 4 superconformal symmetry, the corresponding chiral algebra is an extension of the (small) N=4 super-Virasoro algebra.  In this talk I  will present some results on the classification of N=4 chiral algebras and discuss the conditions they should satisfy in order to correspond to a 4d theory. 
 

 
Mon, 06 Nov 2017
12:45
L3

On the Vafa-Witten theory on closed four-manifolds

Yuuji Tanaka
(Oxford)
Abstract

We discuss mathematical studies on the Vafa-Witten theory, one of topological twists of N=4 super Yang-Mills theory in four dimensions, from the viewpoints of both differential and algebraic geometry. After mentioning backgrounds and motivation, we describe some issues to construct mathematical theory of this Vafa-Witten one, and explain possible ways to sort them out by analytic and algebro-geometric methods, the latter is joint work with Richard Thomas.

 
Mon, 30 Oct 2017
12:45
L3

Generalized Seiberg-Witten equations and almost-Hermitian geometry

Varun Thakre
(ICTS Bengaluru)
Abstract

I will talk about a generalisation of the Seiberg-Witten equations introduced by Taubes and Pidstrygach, in dimension 3 and 4 respectively, where the spinor representation is replaced by a hyperKahler manifold admitting certain symmetries. I will discuss the 4-dimensional equations and their relation with the almost-Kahler geometry of the underlying 4-manifold. In particular, I will show that the equations can be interpreted in terms of a PDE for an almost-complex structure on 4-manifold. This generalises a result of Donaldson. 

 
Mon, 23 Oct 2017
12:45
L3

Supersymmetric Partition Functions and Higher Dimensional A-twist

Heeyeon Kim
(Oxford)
Abstract

I will talk about three-dimensional N=2 supersymmetric gauge theories on a class of Seifert manifold. More precisely, I will compute the supersymmetric partition functions and correlation functions of BPS loop operators on M_{g,p}, which is defined by a circle bundle of degree p over a genus g Riemann surface. I will also talk about four-dimensional uplift of this construction, which computes the generalized index of N=1 gauge theories defined on elliptic fiberation over genus g Riemann surface. We will find that the partition function or the index can be written as a sum over "Bethe vacua” of two-dimensional A-twisted theory obtained by a circle compactification. With this framework, I will show how the partition functions on manifolds with different topologies are related to each other. We will also find that these observables are very useful to study the action of Seiberg-like dualities on co-dimension two BPS operators.

 
Thu, 19 Oct 2017
15:00
L4

Dynamic Gauge Linear Sigma Models from Six Dimensions

Fabio Abruzzi
(UPenn)
Abstract

Compactifications of 6D Superconformal Field Theories (SCFTs) on four-manidolfds lead to novel interacting 2D SCFTs. I will describe the various Lagrangian and non-Lagrangian sectors of the resulting 2D theories, as well as their interactions. In general this construction can be embedded in compactifications of the physical superstring, providing a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. a UV completion for non-critical string theories.  

 
Mon, 16 Oct 2017
12:45
L3

A geometric recipe for twisted superpotentials

Lotte Hollands
(Herriot-Watt University, Edinburgh)
Abstract

Nekrasov, Rosly and Shatashvili observed that the generating function of a certain space of SL(2) opers has a physical interpretation as the effective twisted superpotential for a four-dimensional N=2 quantum field theory. In this talk we describe the ingredients needed to generalise this observation to higher rank. Important ingredients are spectral networks generated by Strebel differentials and the abelianization method. As an example we find the twisted superpotential for the E6 Minahan-Nemeschansky theory. 
 

 
 
Mon, 09 Oct 2017
12:45
L3

Arithmetic of attractive K3 surfaces and black holes

Shehryar Sikander
(ICTP Trieste)
Abstract

A K3 surface is called attractive if and only if its Picard number is 20: The maximal possible. Attractive K3 surfaces possess complex multiplication. This property endows attractive K3 surfaces with rich and well understood arithmetic. For example, the associated Galois representation turns out to be a product of well known two dimensional representations and the  Hasse-Weil L-function turns out to be a product of well known L-functions. On the other hand, attractive K3 surfaces show up as solutions of the attractor equations in type IIB string theory compactified on the product of a K3 surface with an elliptic curve. As such, these surfaces dictate the near horizon geometry of a charged black hole in this theory. We will try to see which arithmetic properties of the attractive K3 surfaces lend a stringy interpretation and use them to shed light on physical properties of the charged black hole. 
 

 
 
 
Mon, 12 Jun 2017
12:45
L3

CANCELLED

Shehryar Sikander
(Abdus Salam ICTP)
Mon, 05 Jun 2017
12:45
L3

Effects of higher curvature terms on dual thermal QFTs out of equilibrium

Andrei Starinets
(Oxford)
Abstract

Transport properties of liquids and gases in the regime of weak coupling (or effective weak coupling) are determined by the solutions of relevant kinetic equations for particles or quasiparticles, with transport coefficients being proportional to the minimal eigenvalue of the linearized kinetic operator. At strong coupling, the same physical quantities can sometimes be determined from dual gravity, where quasinormal spectra enter as the eigenvalues of the linearized Einstein's equations. We discuss the problem of interpolating between the two regimes using results from higher derivative gravity.

 
Mon, 22 May 2017
12:45
L3

Nonperturbative approach to hadron physics from superconformal algebraic structures and their light-front holographic embedding

Guy F. de Teramond
(University of Costa Rica)
Abstract

Understanding the structure of hadrons in terms of their fundamental constituents requires an understanding of QCD at large distances, a vastly complex and unsolved dynamical problem. I will discuss in this talk a new approach to hadron structure based on superconformal quantum mechanics in the light-front and its holographic embedding in a higher dimensional gravity theory. This approach captures essential aspects of the confinement dynamics which are not apparent from the QCD Lagrangian, such as the emergence of a mass scale and confinement, the occurrence of a zero mode: the pion, universal Regge trajectories for mesons and baryons and precise connections between the light meson and nucleon spectra. This effective semiclassical approach to relativistic bound-state equations in QCD can be extended to heavy-light hadrons where heavy quark masses break the conformal invariance but the underlying dynamical supersymmetry holds.