Forthcoming events in this series


Mon, 26 Oct 2015

12:00 - 13:00
L5

Generalising Calabi-Yau for generic flux backgrounds

Anthony Ashmore
(Imperial College)
Abstract

Calabi-Yau manifolds without flux are perhaps the best-known
supergravity backgrounds that leave some supersymmetry unbroken. The
supersymmetry conditions on such spaces can be rephrased as the
existence and integrability of a particular geometric structure. When
fluxes are allowed, the conditions are more complicated and the
analogue of the geometric structure is not well understood.

In this talk, I will define the analogue of Calabi-Yau geometry for
generic D=4, N=2 backgrounds with flux in both type II and
eleven-dimensional supergravity. The geometry is characterised by a
pair of G-structures in 'exceptional generalised geometry' that
interpolate between complex, symplectic and hyper-Kahler geometry.
Supersymmetry is then equivalent to integrability of the structures,
which appears as moment maps for diffeomorphisms and gauge
transformations. Similar structures also appear in D=5 and D=6
backgrounds with eight supercharges.

As a simple application, I will discuss the case of AdS5 backgrounds
in type IIB, where deformations of these geometric structures give
exactly marginal deformations of the dual field theories.

 
 
Mon, 19 Oct 2015

12:00 - 13:00
L5

From special geometry to Nernst branes

Thomas Mohaupt
(Liverpool)
Abstract
Dimensional reduction over time is a useful method for constructing stationary solutions in supergravity, both extremal and non-extremal. For theories with N=2 vector multiplets one can in addition exploit the special Kahler geometry encoding the couplings. I will explain why aformulation in terms of real coordinates and a Hesse potential is useful, and how special Kahler geometry is related to
para-quaternionic Kahler geometry by dimensional reduction. As an application I will present the construction of black brane solutions with vanishing entropy density at zero temperature (`Nernst branes') in FI-gauged N=2 supergravity in four and five dimensions.
 
 
Mon, 12 Oct 2015

12:00 - 13:00
L5

Supersymmetric Defects in 3d/3d

Masahito Yamazaki
(IPMU)
Abstract

The 3d/3d correspondence is about the correspondence between 3d N=2 supersymmetric gauge theories and the 3d complex Chern-Simons theory on a 3-manifold.

In this talk I will describe codimension 2 and 4 supersymmetric defects in this correspondence, by a combination of various existing techniques, such as state-integral models, cluster algebras, holographic dual, and 5d SYM.

 
 
 
Mon, 15 Jun 2015

12:00 - 13:00
L5

Quiver Invariant, Abelianisation and Mutation

Seung-Joo Lee
(Virginia Tech)
Abstract

In this talk, gauged quiver quantum mechanics will be analysed for BPS state counting. Despite the wall-crossing phenomenon of those countings, an invariant quantity of quiver itself, dubbed quiver invariant, will be carefully defined for a certain class of abelian quiver theories. After that, to get a handle on nonabelian theories, I will overview the abelianisation and the mutation methods, and will illustrate some of their interesting features through a couple of simple examples.

Mon, 08 Jun 2015

12:00 - 13:00
L5

E11 and Generalised Space-time

Peter West
(King's College, London)
Abstract

It has been conjectured that the fundamental theory of strings and branes has an $E_{11}$ symmetry. I will explain how this conjecture  leads to  a generalised space-time,  which is automatically equipped with its own geometry, as well as equations of motion for the fields that live on this generalised space-time.

 

Mon, 01 Jun 2015

12:00 - 13:00
L5

Form factors and the dilatation operator of N=4 SYM theory from on-shell methods

Matthias Wilhelm
(Humboldt Universität zu Berlin)
Abstract

Form factors form a bridge between the purely on-shell amplitudes and the purely off-shell correlation functions. In this talk, we study the form factors of general gauge-invariant local composite operators in N=4 SYM theory via on-shell methods. At tree-level and for a minimalnumber of external fields, the form factor exactly realises the spin-chain picture of N=4 SYM theory in the language of scattering amplitudes. Via generalised unitarity, we obtain the cut-constructible part of the one-loop correction to the minimal form factor of a generic operator. Its UV divergence yields the complete one-loop dilatation operator of the theory. At two-loop order, we employ unitarity to calculate the minimal form factors and thereby the dilatation operator for the Konishi primary operator and all operators in the SU(2) sector. For the former operator as well as other non-protected operators, important subtleties arise which require an extension of the method of unitarity.

Mon, 11 May 2015

12:00 - 13:00
L5

TBA

Ruth Gregory
(Durham)
Mon, 27 Apr 2015

12:00 - 13:00
L5

Geometry and Arithmetic of Two One-Parameter Special Geometries

Philip Candelas
(Oxford)
Abstract

Recently, as part of a project to find CY manifolds for which both the Hodge numbers (h^{11}, h^{21}) are small, manifolds have been found with Hodge numbers (4,1) and (1,1). The one-dimensional special geometries of their complex structures are more complicated than those previously studied. I will review these, emphasising the role of the fundamental period and Picard-Fuchs equation. Two arithmetic aspects arise: the first is the role of \zeta(3) in the monodromy matrices and the second is the fact, perhaps natural to a number theorist, that through a study of the CY manifolds over finite fields, modular functions can be associated to the singular manifolds of the family. This is a report on joint work with Volker Braun, Xenia de la Ossa and Duco van Straten.

Mon, 09 Mar 2015

12:00 - 13:00
Fisher Room

The Coulomb branch of 3d N=4 theories

Tudor Dimofte
(IAS, Princeton)
Abstract
While the Higgs branch of a 3d N=4 gauge theory is protected from quantum corrections and its metric is easily computable, the Coulomb branch suffers both perturbative and nonperturbative corrections, and has long remained mysterious. I will present a construction of the Coulomb branch as a complex manifold, and (in principle) as a hyperkahler manifold. In particular, holomorphic functions on the Coulomb branch come from vevs of monopole operators in a chiral ring, and it turns out that this ring has a simple, quasi-abelian description. Applying the construction to linear quiver gauge theories, one finds new descriptions of singular monopole moduli spaces. I may also touch upon relations to equivariant vortex counting, geometric representation theory, and symplectic duality.
Mon, 02 Mar 2015

12:00 - 13:00
L3

Symmetry enhancement near horizons

George Papadopoulos
(Kings College London)
Abstract

I shall demonstrate, under some mild assumptions, that the symmetry group of  extreme, Killing, supergravity horzions contains an sl(2, R) subalgebra.  The proof requires a generalization of the  Lichnerowicz theorem for non-metric connections. The techniques developed can also be applied in the classification
of AdS and Minkowski flux backgrounds.
 

Mon, 23 Feb 2015

12:00 - 13:00
Fisher Room

Wall-crossing, easy and smooth

Boris Pioline
(Pierre and Marie Curie University)
Abstract
The spectrum of BPS states in four-dimensional gauge theories and string vacua with N=2 supersymmetry is well-known to be jump across certain walls in moduli space, where bound states can decay. In this talk I will survey how the discontinuity can be understood in terms of the supersymmetric quantum mechanics of mutually non-local point particles. This physical picture 
suggests that, at any point in moduli space, the BPS spectrum can be viewed as a sum of bound states of absolutely stable `single-centered' constituents. This idea appears to be vindicated in the context of quiver moduli spaces. Finally, I shall explain how the discontinuous BPS indices can be combined into a `new' supersymmetric index, a function which sums up multi-particle state contributions and is continuous across the wall.
Mon, 16 Feb 2015

12:00 - 13:00
L5

Singular Fibers and Coulomb Phases

Sakura Schafer-Nameki
(Kings College London)
Abstract

I will discuss how singular fibers in higher codimension in elliptically fibered Calabi-Yau fourfolds can be studied using Coulomb branch phases for d=3 supersymmetric gauge theories. This approach gives an elegent description of the generalized Kodaira fibers in terms of combinatorial/representation-theoretic objects called "box graphs", including the network of flops connecting distinct small resolutions. For physics applications, this approach can be used to constrain the possible matter spectra and possible U(1) charges (models with higher rank Mordell Weil group) for F-theory GUTs.

Mon, 09 Feb 2015

12:00 - 13:00
L5

Generalised geometry for supergravity and flux vacua

Charles Strickland-Constable
(CEA/Saclay)
Abstract

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.
 

Mon, 02 Feb 2015

12:00 - 13:00
Fisher Room of NAPL

BRST Cohomology, Extraordinary Invariants and the Zen Splitting of SUSY

John Dixon
(visiting Oxford)
Abstract

The chiral scalar superfield has interesting BRST cohomology, but the relevant cohomology objects all  have spinor indices. So they cannot occur in an action. They need to be coupled to a chiral dotted spinor superfield. Until now, this has been very problematic, since no sensible action for a chiral dotted spinor superfield was known.  The most obvious such action contains higher derivatives and tachyons.

Now,  a sensible  action has been found. When coupled to the cohomology, this action removes the supersymmetry charge from the theory while maintaining the rigidity and power of supersymmetry.The simplest example of this phenomenon has exactly the fermion content of the Leptons or the Quarks.  The mechanism has the potential to get around the cosmological constant problem, and also the problem of the sum rules of spontaneously broken supersymmetry.

Mon, 26 Jan 2015

12:00 - 13:00
L5

Calabi-Yau Manifolds with Small Hodge Numbers

Philip Candelas
(Oxford)
Abstract

This is a report on an ongoing project to construct Calabi-Yau manifolds for which the Hodge numbers $(h^{11}, h^{21})$ are both relatively small. These manifolds are, in a sense, the simplest Calabi-Yau manifolds. I will report on joint work with Volker Braun, Andrei Constantin, Rhys Davies, Challenger Mishra and others.

Mon, 19 Jan 2015

12:00 - 13:00
L5

EPR = ER

Joan Simon
(Edinburgh)
Mon, 01 Dec 2014

12:00 - 13:00
L5

High-loop perturbative QFT from integrability

Dmytro Volin
(Trinity College Dublin)
Abstract

The planar N=4 SYM is believed to be integrable. Following this thoroughly justified belief, its exact spectrum had been encoded recently into a quantum spectral curve (QSC). We can explicitly solve the QSC in various regimes; in particular, one can perform a highly-efficient weak coupling expansion.

I will explain how QSC looks like for the harmonic oscillator and then, using this analogy, introduce the QSC equations for the SYM spectrum. We will use these equations to compute a particular 6-loop conformal dimension in real time and then discuss explicit results (found up to 10-loop orders) as well as some general statements about the answer at any loop-order.

Mon, 24 Nov 2014

12:00 - 13:00
L5

Local moduli for the Strominger system and holomorphic Courant algebroids

Mario Garcia Fernandez
(ICMAT Madrid)
Abstract

I will give an overview of ongoing joint work with R. Rubio and C. Tipler, in which we study the moduli problem for the Strominger system of equations. Building on the work of De la Ossa and Svanes and, independently, of Anderson, Gray and Sharpe, we construct an elliptic complex whose first cohomology group is the space of infinitesimal deformations of a solution of the strominger system. I will also discuss an intriguing link between this moduli problem and a moduli problem for holomorphic Courant algebroids over Calabi-Yau threefolds. Finally, we will see how the problem for the Strominger system embeds naturally in generalized geometry, and discuss some perspectives of this approach.

Mon, 17 Nov 2014

12:00 - 13:00
L5

The holographic supersymmetric Renyi entropy in five dimensions

Paul Richmond
(Oxford)
Abstract

I will describe the computation of the supersymmetric Renyi entropy across an entangling 3-sphere for five-dimensional superconformal field theories. For a class of USp(2N) gauge theories I’ll also construct a holographic dual 1/2 BPS black hole solution of Euclidean Romans F(4) supergravity. The large N limit of the gauge theory results will be shown to agree perfectly with the supergravity computations.

Mon, 10 Nov 2014

12:00 - 13:00
L5

Lessons from crossing symmetry at large N

Tomasz Lukowski
(Oxford)
Abstract
In this talk I will discuss how to construct all solutions consistent with crossing symmetry in the limit of large central charge $c ~ N^2$, starting from the four-point correlator of the stress tensor multiplet in N=4 SYM. Unitarity forces the introduction of a scale $\Delta_{gap}$ and these solutions organize as a double expansion in 1/c and $1/\Delta_{gap}$. These solutions are valid to leading order in 1/c and to all orders in $1/\Delta_{gap}$ and reproduce, in particular, instanton corrections previously found. Comparison with such instanton computations allows to fix $\Delta_{gap}$. Using this gap scale one can explain the upper bounds for the scaling dimension of unprotected operators observed in the numerical superconformal bootstrap at large central charge. Furthermore, I will present connections between such upper bounds and positivity constraints arising from causality in flat space and I will discuss how certain relations derived from causality constraints for scattering in AdS follow from crossing symmetry.
 
Mon, 03 Nov 2014

12:00 - 13:00
L5

Surface Defects and Dualities in Supersymmetric Gauge Theories

Heng- Yu Chen
(National Taiwan University and Cambridge)
Abstract
I will begin by introducing different surface defects in 4d N=2 supersymmetric gauge theories, and discuss how the 4d supersymmetry breaking effect can descend into the 2d world volume theories of the surface defects.
I will then discuss how certain surface defects can naturally appear as saddle point solutions in 4d N=1 and N=2 superconformal indices, also confirm this with explicit 2d elliptic genus calculations. I will wrap up the talk by discussing their roles in different field theoretic dualities.
Mon, 27 Oct 2014

12:00 - 13:00
L5

Global string models with chiral matter and moduli stabilisation

Sven Krippendorf
(Oxford)
Abstract

I will discuss the implementation of explicit stabilisation of all closed string moduli in fluxed type IIB Calabi-Yau compactifications with chiral matter.  Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. We consider Calabi-Yau manifolds with a discrete symmetry that reduces the effective number of complex structure moduli, which allows us to calculate the corresponding periods and find explicit flux vacua. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario.

Mon, 20 Oct 2014

12:00 - 13:00
L5

Calabi-Yau Fourfolds, F-theory and Fluxes

Andreas Braun
(Oxford)
Abstract

I will discuss several recent developments regarding the construction of fluxes for F-theory on Calabi-Yau fourfolds. Of particular importance to the effective physics is the structure of the middle (co)homology groups, on which new results are presented. Fluxes dynamically drive the fourfold to Noether-Lefschetz loci in moduli space. While the structure of such loci is generally unknown for Calabi-Yau fourfolds, this problem can be answered in terms of arithmetic for K3 x K3 and a classification is possible.

Mon, 16 Jun 2014

12:00 - 13:00
L5

The Landscape

Laura Mersini Houghton
(University of North Carolina at Chapel Hill)
Abstract
I will discuss the validity of the claims that eternal inflation populates the landscape and show the reasons for the mathematical inconsistency between the two. Within the formalism of quantum cosmology, solutions for the wavefunction of the universe to the landscape are Anderson localized. The latter can give rise to observational tests of the landscape, some of which are already supported from Planck's findings of anomalies at large scales.
Mon, 09 Jun 2014

12:00 - 13:00
L5

String Spectra and Effective Actions with Minimal Supersymmetry in the Type I Context

Igor Buchberger
(Karlstad University)
Abstract
I will discuss four-dimensional minimally supersymmetric toroidal orientifold models with D-branes and worldvolume flux. With flux but no orbifold projection, these models are well understood. They have been used extensively in various phenomenological contexts, and are T-dual to D-branes at angles. With orbifold, supersymmetry is reduced also in the closed string sector, and T-duality relations are not always straightforward. I will discuss work in progress on aspects of the one-loop string effective actions of these more general models.
Mon, 26 May 2014

12:00 - 13:00
L5

Geometric Constraints in Heterotic/F-theory Duality

Lara Anderson
(Virginia Tech)
Abstract
We systematically analyze a broad class of dual heterotic and F-theory models that give four-dimensional supergravity theories, and compare the geometric constraints on the two sides of the duality. In this talk I will show that F-theory gives new insight into the conditions under which heterotic vector bundles can be constructed. We show that in many cases the F-theory geometry imposes a constraint on the extent to which the gauge group can be enhanced, corresponding to limits on the way in which the heterotic bundle can decompose. We explicitly construct all dual F-theory/heterotic pairs in the class under consideration where the common twofold base surface is toric, and give both toric and non-toric examples of the general results. Finally, we provide evidence for important new aspects of G-flux in four-dimensional compactifications.
Mon, 19 May 2014

12:00 - 13:00
L5

Hyperkahler Sigma Model and Field Theory on Gibbons-Hawking Spaces

Anindya Dey
(University of Texas at Austin)
Abstract
We will introduce a deformed version of the 3d hyperkahler sigma model which arises from the compactification of d=4,N=2 gauge theories on a Gibbons-Hawking space. After discussing extensions of the relevant hyperkahler identities from the standard story, we will derive the condition for which the deformed sigma model preserves 4 out of the 8 supercharges. Using supersymmetry considerations, we will also demonstrate that the contribution of the NUT center to the sigma model path integral is a holomorphic section of a certain holomorphic line bundle over the hyperkahler target. As a concrete example, we will discuss the case where the original 4d theory is a U(1) super Yang-Mills and show that the NUT center contribution in this case is the Jacobi theta function.
Mon, 12 May 2014

12:00 - 13:00
L5

Finite size corrections in the gamma_i-deformed N=4 SYM theory

Christoph Seig
(Humboldt University)
Abstract
The gamma_i-deformed N=4 SYM was proposed as the conformal field theory in a non-supersymmetric deformation of the AdS/CFT correspondence. As we have shown, conformal invariance is, however, broken in this theory by running double-trace couplings. Although these couplings are apparently suppressed in 't Hooft's planar limit, they give rise to finite size corrections in the planar spectrum. In particular, they should be considered in the integrability-based formulation of the planar spectral problem. In the talk, I will explain our results in detail and also discuss possible implications for the conjectured integrability-based approach.
Mon, 05 May 2014

12:00 - 13:00
L5

The superconformal index of (2,0) theory with defects

Mathew Bullimore
(Perimeter Institute)
Abstract
String theory predicts the existence of a class of interacting superconformal field theories in six dimensions which arise on the world-volume of coincident M5 branes. There are important non-local operators in these theories corresponding to intersecting M2 and M5 branes. I will explain how to compute the superconformal index in the presence of such operators using five-dimensional supersymmetric gauge theory. The answers are in 1-1 correspondence with characters of representations of a class of `chiral algebras’. I will discuss potential applications of this result for bootstrapping correlation functions.
Mon, 28 Apr 2014

12:00 - 13:00
L5

The Moduli Space of N=1 Supersymmetric Heterotic Compactifications

Xenia de la Ossa
(Oxford)
Abstract
We describe the tangent space to the moduli space of heterotic string theory compactifications which preserve N=1 supersymmetry in four dimensions, that is, the infinitesimal parameter space of the Strominger system. We establish that if we promote a connection on TX to a field, the moduli space corresponds to deformations of a holomorphic structure \bar{D} on a bundle Q. The bundle Q is constructed as an extension by the cotangent bundle T^*X of the bundle E= End(V) \oplus End(TX) \oplus TX with an extension class {\cal H} which precisely enforces the anomaly cancelation condition. The deformations corresponding to the bundle E are simultaneous deformations of the holomorphic structures on the poly-stable bundles V and TX together with those of the complex structure of X. We discuss the fact that the ``moduli'' corresponding to End(TX) cannot be physical, but are however needed in our mathematical structure to be able to enforce the anomaly cancelation condition. This is work done in collaboration with Eirik Svanes.
Mon, 10 Mar 2014

12:00 - 13:00
L5

Hexagon functions and six-particle amplitudes in N=4 super Yang-Mills

James Drummond
(Trinity College Dublin)
Abstract
We describe the analytic properties of scattering amplitudes in N=4 super Yang-Mills theory, with the focus on high order corrections to the six-particle MHV amplitude. By making an ansatz for the analytic structure and imposing physical constraints, including matching the BFKL expansion in multi-Regge kinematics and the operator product expansion for the dual Wilson loop in the near-collinear regime, we are able to explicitly construct the amplitude to four loops in perturbation theory.
Mon, 03 Mar 2014

12:00 - 13:00
L5

On black hole thermodynamics from super Yang-Mills

Toby Wiseman
(Imperial College)
Abstract
I will review the link between 1+p dimensional maximally supersymmetric Yang-Mills and the black hole thermodynamics of Dp-branes via the gauge/string correspondence. The finite temperature behaviour of Dp-brane supergravity black holes looks very alien from the perspective of the dual strongly coupled Yang-Mills. However, I will argue that in a natural set of Yang-Mills variables, the classical moduli (which unfortunately are still strongly coupled), certain features of these thermodynamics become quite transparent. A physical picture then emerges of the black holes as a strongly interacting 'soup' of these moduli.
Mon, 24 Feb 2014

12:00 - 13:00
L5

World-Sheet Form Factors in AdS/CFT

Tristan McLoughlin
(Trinity College Dublin)
Abstract
The study of the world-sheet S-matrix for AdS_5 x S^5 strings was a key step in the complete determination of the spectrum of anomalous dimensions for planar N=4 super-Yang-Mills. To go beyond the spectral problem it is important to consider higher-point worldsheet correlation functions and, as is standard in many integrable models, one approach is the study of form factors. We will discuss the all-order functional equations that these objects must obey, their perturbative computation and their connection to four-dimensional gauge theory three-point functions.
Mon, 10 Feb 2014

12:00 - 13:00
L5

Non-perturbative aspects of higher spin holography

Alejandra Castro
(Amsterdam)
Abstract
In this talk I will review the interpretation of Wilson line operators in the context of higher spin gravity in 2+1 dim and holography. I will show how a Wilson line encapsulates the thermodynamics of black holes. Furthermore it provides an elegant description of massive particles. This opens a new window of observables which will allow us to probe the true geometrical nature of higher spin gravity.
Mon, 03 Feb 2014

12:00 - 13:00
L5

Partition functions and superconformal indices as applications of Kohn-Rossi cohomology

Johannes Schmude
(RIKEN)
Abstract
I this talk, I will discuss two entirely different classes of super Yang-Mills theories; the four dimensional SCFTs dual to AdS x Y where Y is Sasaki-Einstein, and five dimensional theories defined directly on such manifolds. What the two classes have in common is that they lend themselves to the application of Kohn-Rossi cohomology. Intuitively, one can think of this as an odd-dimensional relative of Dolbeault cohomology. Kohn-Rossi cohomology groups appear naturally when doing supergravity calculations of superconformal indices in the first class of theories or when calculating the partition functions of the latter using localisation. After a brief introduction to the relevant aspects of Sasaki-Einstein geometry, I will give an overview of both these applications.
Mon, 27 Jan 2014

12:00 - 13:00
L5

G-theory: U-folds as K3 fibrations

José Morales
(Roma 2 and Oxford)
Abstract
We study N=2 flux vacua describing intrinsic non-perturbative systems of 3- and 7-branes. In the spirit of F-theory, the solutions are described in purely geometric terms with the flux data codified on CY geometries given as K3 fibrations over a two-sphere.
Mon, 20 Jan 2014

12:00 - 13:00
L5

A Holographic Model of the Kondo Effect

Andy O'Bannon
(Oxford)
Abstract
The Kondo effect occurs in metals doped with magnetic impurities: in the ground state the electrons form a screening cloud around each impurity, leading to dramatic changes in the thermodynamic and transport properties of the metal. Although the single-impurity Kondo effect is considered a solved problem, many questions remain, especially about the fate of the Kondo effect in the presence of multiple impurities. In particular, for a sufficiently dense concentration of impurities, a competition between the Kondo effect and inter-impurity interactions can lead to quantum criticality and non-Fermi liquid behavior, which remains poorly understood. In this talk I will present a model of the single-impurity Kondo effect based on holography, also known as gauge-gravity duality or the AdS/CFT correspondence, which may serve as a foundation for a new approach to the multiple-impurity system.
Mon, 25 Nov 2013

12:00 - 13:00
L5

A Kobayashi-Hitchin correspondence for generalized Kaehler manifolds

Ruxandra Moraru
(Waterloo)
Abstract

In this talk, we discuss an analogue of the Hermitian-Einstein equations for generalized Kaehler manifolds proposed by N. Hitchin. We explain in particular how these equations are equivalent to a notion of stability, and that there is a Kobayahsi-Hitchin-type of correspondence between solutions of these equations and stable objects. The correspondence holds even for non-Kaehler manifolds, as long as they are endowed with Gauduchon metrics (which is always the case for generalized Kaehler structures on 4-manifolds).

This is joint work with Shengda Hu and Reza Seyyedali.

Mon, 18 Nov 2013

12:00 - 13:00
L5

Applications of integrability in AdS/CFT: On the quark-antiquark potential and the spectrum of tachyons

Nadav Drukker
(Kings College, London)
Abstract
N=4 supersymmetric Yang-Mills is probably the simplest interacting quantum field theory in four dimensions. Likewise its gravity dual:AdS_5 x S^5 is one of the simplest string theory backgrounds. This string background is much harder to study than flat space since the spectrum is not given by free oscillators, yet it is integrable, meaning that there is an infinite number of conserved charges on the world-sheet. Over the past 10 or so years the tools of integrability have been developed and applied to study this theory. In my talk I will present two recent applications of these tools to the study of the spectrum of open strings. The first problem is the potential between charged particles - the N=4 analogues of a quark and an antiquark. The second is the ground state of an open string stretched between a D-brane and an anti D-brane which is the tachyon of perturbative (non SUSY) string theory. My talk will be geared to a general theoretical physics audience and will not dwell too much on the technicalities of the integrable model, which are rather involved and will try to focus mainly on the observables we study and the results we learnt about them.
Mon, 11 Nov 2013

12:00 - 13:00
L5

Multiple Polylogs, symbols and polygons

Susama Agarwalla
(Oxford)
Abstract
Symbols of multiple polylogs have recently become important in calculations of amplitudes in N=4 SYM. In this talk, I give a simple pictoral presentation of multiple polylogs and their symbols. I also discuss the Hopf algebraic structure underlying the multiple polylogs, and give some new relationships between different multiple polylogs based on the symmetries of my pictoral presentation that are exact on the symbol level, but complicated on the level of the actual multiple polylogs..
Mon, 04 Nov 2013

12:00 - 13:00
L5

Global Properties of Supergravity Solutions

Jan Gutowski
(Surrey)
Abstract
Recent progress has been made in the analysis of supergravity solutions. It can be shown that for a large class of solutions, the conditions imposed by supersymmetry are equivalent to determining the zero modes of various types of Dirac operators, by an extension of the classical Lichnerowicz theorem. Hence the number of supersymmetries are constrained by index theory. For near-horizon black hole geometries, this mechanism produces symmetry enhancement.
Mon, 28 Oct 2013

12:00 - 13:00
L5

An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts

Philip Candelas
(Oxford)
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut intotwo parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.
Mon, 21 Oct 2013

12:00 - 13:00
L5

Integrability and instability in AdS/CFT

Ryo Suzuki
(Oxford)
Abstract
The energy of an open string ending on giant-graviton branes in the AdS_5xS^5 spacetime is equal to the dimension of determinant-like operators in N=4 super Yang-Mills, according to AdS/CFT. We investigate this correspondence under a brane-antibrane setup by using gauge theory and integrability methods, and propose Boundary TBA equations to compute the exact dimensions of the determinant-like operators at any coupling. By solving the Boundary TBA numerically, we found a divergence of the exact energies at a finite value of the 't Hooft coupling constant, implying that string states are tachyonic at strong coupling. In this talk I would like to explain the origin of singularity after briefly reviewing the application of integrability methods to AdS/CFT.
Mon, 14 Oct 2013

12:00 - 13:00
L5

Higher-Spin Correlators

Agnese Bissi
(Oxford)
Abstract
In this talk I will discuss the three-point correlator of two protected scalar operators and one higher spin twist-two operator in N = 4 SYM, in the limit of large spin. This structure constant can be extracted from the OPE of the four-point correlator of protected scalar operators. Based on the OPE structure, symmetry arguments and intuition from the available perturbative results, it is possible to predict the structure constant at all loops in perturbation theory. This being so, it is natural to propose an expression for the all-loop four-point correlator in a particular limit.