15:45
Forthcoming events in this series
15:45
15:45
Link Invariants Given by Homotopy Groups
Abstract
In this talk, we introduce the (general) homotopy groups of spheres as link invariants for Brunnian-type links through the investigations on the intersection subgroup of the normal closures of the meridians of strongly nonsplittable links. The homotopy groups measure the difference between the intersection subgroup and symmetric commutator subgroup of the normal closures of the meridians and give the invariants of the links obtained in this way. Moreover all homotopy groups of any dimensional spheres can be obtained from the geometric Massey products on certain links.
15:45
Surface quotients of hyperbolic buildings
Abstract
Bourdon's building is a negatively curved 2-complex built out of hyperbolic right-angled polygons. Its automorphism group is large (uncountable) and remarkably rich. We study, and mostly answer, the question of when there is a discrete subgroup of the automorphism group such that the quotient is a closed surface of genus g. This involves some fun elementary combinatorics, but quickly leads to open questions in group theory and number theory. This is joint work with David Futer.
15:45
Higher string topology
Abstract
The talk will begin with a brief account of the construction of string topology operations. I will point out some mysteries with the formulation of these operations, such as the role of (moduli) of surfaces, and pose some questions. The remainder of the talk will address these issues. In particular, I will sketch some ideas for a higher-dimensional version of string topology. For instance, (1) I will describe an E_{d+1} algebra structure on the (shifted) homology of the free mapping space H_*(Map(S^d,M^n)) and (2) I will outline how to obtain operations H_*(Map(P,M)) -> H_*(Map(Q,M)) indexes by a moduli space of zero-surgery data on a smooth d-manifold P with resulting surgered manifold Q.
15:45
On spaces of homomorphisms and spaces of representations
Abstract
The subject of this talk is the structure of the space of homomorphisms from a free abelian group to a Lie group G as well as quotients spaces given by the associated space of representations.
These spaces of representations admit the structure of a simplicial space at the heart of the work here.
Features of geometric realizations will be developed.
What is the fundamental group or the first homology group of the associated space in case G is a finite, discrete group ?
This deceptively elementary question as well as more global information given in this talk is based on joint work with A. Adem, E. Torres, and J. Gomez.
15:45
15:45
15:45
15:45
15:45
15:45
Wick Rotation in Quantum Field Theory
Abstract
Physical space-time is a manifold with a Lorentzianmetric, but the more mathematical treatments of the theory usually prefer toreplace the metric with a positive - i.e. Riemannian - one. The passage fromLorentzian to Riemannian metrics is called 'Wick rotation'. In my talk I shallgive a precise description of what is involved, and shall explain some of itsimplications for physics.
15:45
15:45
15:45
Cohomology jump loci, sigma-invariants, and fundamental groups of alge-
15:45
15:45
Upper bounds onReidemeistermoves
Abstract
Given any two diagrams of the same knot or link, we
provide an explicit upper bound on the number of Reidemeister moves required to
pass between them in terms of the number of crossings in each diagram. This
provides a new and conceptually simple solution to the equivalence problem for
knot and links. This is joint work with Marc Lackenby.
15:45
Characters and pushforward for differential K-theory with the Index theorem interpretation
15:45
11:00
The virtual fibering conjecture and related questions
Abstract
Thurston asked a bold question of whether finite volume hyperbolic 3-manifolds might always admit a finite-sheeted cover which fibers over the circle. This talk will review some of the progress on this question, and discuss its relation to other questions including residual finiteness and subgroup separability, the behavior of Heegaard genus in finite-sheeted covers, CAT(0) cubings, the RFRS condition, and subgroups of right-angled Artin groups. In particular, hyperbolic 3-manifolds with LERF fundamental group are virtually fibered. Some applications of the techniques will also be mentioned.
15:45
The Blob Complex
Abstract
We define a chain complex B_*(C, M) (the "blob complex") associated to an n-category C and an n-manifold M. This is in some sense the derived category version of a TQFT. Various special cases of the blob complex are
familiar: (a) if M = S^1, then the blob complex is homotopy equivalent to the Hochschild complex of the 1-category C; (b) for * = 0, H_0 of the blob complex is the Hilbert space of the TQFT based on C; (c) if C is a commutative polynomial ring (viewed as an n-category), then the blob complex is homotopy equivalent to singular chains on the configuration (Dold-Thom) space of M. The blob complex enjoys various nice formal properties, including a higher dimensional generalization of the Deligne conjecture for Hochschild cohomology.
If time allows I will discuss applications to contact structures on 3-manifolds and Khovanov homology for links in the boundaries of 4-manifolds. This is joint work with Scott Morrison.
15:45
Decomposition complexity of metric spaces
Abstract
I shall describe the notion of finite decomposition complexity (FDC), introduced in joint work with Romain Tessera and Guoliang Yu on the Novikov and related conjectures. The talk will focus on the definition of FDC and examples of groups having FDC.
15:45
The asymptotic geometry of mapping class groups and application
Abstract
I shall describe the asymptotic geometry of the mapping class
group, in particular its tree-graded structure and
its equivariant embedding in a product of trees.
This can be applied to study homomorphisms into mapping class
groups defined on groups with property (T) and on lattices in semisimple groups.
The talk is based upon two joint works with J. Behrstock, Sh. Mozes and M. Sapir.