Forthcoming events in this series
15:45
15:45
moduli of flat bundles on Riemann surfaces
Abstract
Let G be a compact semisimple Lie group. A classical paper of Atiyah and Bott (from 1982) studies the moduli space of flat G-bundles on a fixed Riemann surface S. Their approach completely determines the integral homology of this moduli space, using Morse theoretic methods. In the case where G is U(n), this moduli space is homotopy equivalent to the moduli space of holomorphic vector bundles on S which are "semi-stable". Previous work of Harder and Narasimhan determined the Betti numbers of this moduli space using the Weil conjectures. 20 years later, a Madsen and Weiss determined the homology of the moduli space of Riemann surfaces, in the limit where the genus of the surface goes to infinity.
My talk will combine these two spaces: I will describe the homology of the moduli space of Riemann surfaces S, equipped with a flat G-bundle E -> S, where we allow both the flat bundle and the surface to vary. I will start by reviewing parts of the Atiyah-Bott and Madsen-Weiss papers. Our main theorem will then be a rather easy consequence. This is joint work with Nitu Kitchloo and Ralph Cohen.
14:00
Representation of Quantum Groups and new invariants of links
Abstract
The colored HOMFLY polynomial is a quantum invariant of oriented links in S³ associated with a collection of irreducible representations of each quantum group U_q(sl_N) for each component of the link. We will discuss in detail how to construct these polynomials and their general structure, which is the part of Labastida-Marino-Ooguri-Vafa conjecture. The new integer invariants are also predicted by the LMOV conjecture and recently has been proved. LMOV also give the application of Licherish-Millet type formula for links. The corresponding theory of colored Kauffman polynomial could also be developed in a same fashion by using more complicated algebra method.
In a joint work with Lin Chen and Nicolai Reshetikhin, we rigorously formulate the orthogonal quantum group version of LMOV conjecture in mathematics by using the representation of Brauer centralizer algebra. We also obtain formulae of Lichorish-Millet type which could be viewed as the application in knot theory and topology. By using the cabling technique, we obtain a uniform formula of colored Kauffman polynomial for all torus links with all partitions. Combined these together, we are able to prove many interesting cases of this orthogonal LMOV conjecture.
11:00
Applications of the Cobordism Hypothesis
Abstract
In this lecture, I will illustrate the cobordism hypothesis by presenting some examples. Exact content to be determined, depending on the interests of the audience.
11:00
The Cobordism Hypothesis
Abstract
In this lecture, I will give a more precise statement of the Baez-Dolan cobordism hypothesis, which gives a description of framed bordism (higher) categories by a universal mapping property. I'll also describe some generalizations of the cobordism hypothesis, which take into account the structure of diffeomorphism groups of manifolds and which apply to manifolds which are not necessarily framed.
11:00
An Overview of Higher Category Theory
Abstract
In this lecture, I'll give an overview of some ideas from higher category theory which are needed to make sense of the Baez-Dolan cobordism hypothesis. If time permits, I'll present Rezk's theory of complete Segal spaces (a model for the theory of higher categories in which most morphisms are assumed to be invertible) and explain how bordism categories can be realized in this framework.
15:45
Extended Topological Field Theories
Abstract
In this lecture, I will review Atiyah's definition of a topological quantum field theory. I'll then sketch the definition of a more elaborate structure, called an "extended topological quantum field theory", and describe a conjecture of Baez and Dolan which gives a classification of these extended theories.
15:45
The maximal number of exceptional Dehn surgeries
Abstract
I will outline the proof of two old conjectures of Cameron Gordon. The first states that the maximal number of exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 10. The second states the maximal distance between exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 8. The proof uses a combination of new geometric techniques and rigorous computer-assisted calculations.
This is joint work with Rob Meyerhoff.
15:45
The Alexander polynomial of sutured manifolds
Abstract
The notion of a sutured 3-manifold was introduced by Gabai. It is a powerful tool in 3-dimensional topology. A few years ago, Andras Juhasz defined an invariant of sutured manifolds called sutured Floer homology.
I'll discuss a simpler invariant obtained by taking the Euler characteristic of this theory. This invariant turns out to have many properties in common with the Alexander polynomial. Joint work with Stefan Friedl and Andras Juhasz.
15:45
Chromatic phenomena in equivariant stable homotopy
Abstract
There is a well-known relationship between the theory of formal group schemes and stable homotopy theory, with Ravenel's chromatic filtration and the nilpotence theorem of Hopkins, Devinatz and Smith playing a central role. It is also familiar that one can sometimes get a more geometric understanding of homotopical phenomena by examining how they interact with group actions. In this talk we will explore this interaction from the chromatic point of view.
15:45
15:45
15:45
15:45