Tue, 09 Nov 2021
14:00
L5

TBA

Marek Kaluba
(Karlsruher Institute für Technologie)
Abstract

In this leisure talk I will show how a sum of squares decomposition problem can be transformed to a problem of semi-definite optimization. Then the practicality of such reformulations will be discussed, illustrated by an explicit example of Artin's solutions to Hilberts 17th problem. Finally I will show how a numerical solution could be turned into a mathematically certified one, using the order structure on the cone of sums of squares.
The talk requires no pre-requisite knowledge of neither optimization or programming and only undergraduate mathematics.

Tue, 09 Nov 2021

14:00 - 15:00
Virtual

Information-theoretic methods for food supply network identification in food-borne disease outbreaks

Abigail Horn
(University of Southern California)
Abstract

In the event of food-borne disease outbreaks, conventional epidemiological approaches to identify the causative food product are time-intensive and often inconclusive. Data-driven tools could help to reduce the number of products under suspicion by efficiently generating food-source hypotheses. We frame the problem of generating hypotheses about the food-source as one of identifying the source network from a set of food supply networks (e.g. vegetables, eggs) that most likely gave rise to the illness outbreak distribution over consumers at the terminal stage of the supply network. We introduce an information-theoretic measure that quantifies the degree to which an outbreak distribution can be explained by a supply network’s structure and allows comparison across networks. The method leverages a previously-developed food-borne contamination diffusion model and probability distribution for the source location in the supply chain, quantifying the amount of information in the probability distribution produced by a particular network-outbreak combination. We illustrate the method using supply network models from Germany and demonstrate its application potential for outbreak investigations through simulated outbreak scenarios and a retrospective analysis of a real-world outbreak.

Tue, 09 Nov 2021
14:00
L3

TBA

Guiseppe Ughi
(University of Oxford)
Abstract

TBA

Tue, 09 Nov 2021
14:00
Virtual

Classical field theory on quantum principal bundles

Branimir Cacic
(University of New Brunswick Canada)
Further Information

Please note unusual time.

Abstract

In his very first note on noncommutative differential geometry, Connes
showed that the position and momentum operators on the line could be used to
construct constant curvature connections over an irrational noncommutative

2-torus $\mathcal{A}_\theta$. When $\theta$ is a quadratic irrationality,
this yields, in particular, constant curvature connections on non-trivial
noncommutative line bundles---is there an underlying monopole on some
non-trivial noncommutative principal $U(1)$-bundle? We use this case study
to illustrate how approaches to quantum principal bundles introduced by
Brzeziński–Majid and Đurđević, respectively, can be fruitfully synthesized
to reframe classical gauge theory on quantum principal bundles in terms of
synthesis of total spaces (as noncommutative manifolds) from vertical and
horizontal geometric data.

Tue, 09 Nov 2021
14:00
Virtual

TBA

Matija Bucić
(Princeton/IAS)
Mon, 08 Nov 2021

16:00 - 17:00
C1

TBA

George Robinson
(Oxford)
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

Mon, 08 Nov 2021

16:00 - 17:00
L3

TModel-free portfolio theory: a rough path approach

DAVID PROEMEL
(Mannheim University)
Abstract

Classical approaches to optimal portfolio selection problems are based 
on probabilistic models for the asset returns or prices. However, by 
now it is well observed that the performance of optimal portfolios are 
highly sensitive to model misspecifications. To account for various 
type of model risk, robust and model-free approaches have gained more 
and more importance in portfolio theory. Based on a rough path 
foundation, we develop a model-free approach to stochastic portfolio 
theory and Cover's universal portfolio. The use of rough path theory 
allows treating significantly more general portfolios in a model-free 
setting, compared to previous model-free approaches. Without the 
assumption of any underlying probabilistic model, we present pathwise 
Master formulae analogously to the classical ones in stochastic 
portfolio theory, describing the growth of wealth processes generated 
by pathwise portfolios relative to the wealth process of the market 
portfolio, and we show that the appropriately scaled asymptotic growth 
rate of Cover's universal portfolio is equal to the one of the best 
retrospectively chosen portfolio. The talk is based on joint work with 
Andrew Allan, Christa Cuchiero and Chong Liu.

 

Mon, 08 Nov 2021
15:45
Virtual

The first group cohomology and uniformly bounded representations of simple rank-one Lie groups

Shintaro Nishikawa
(University of Münster)
Abstract

Consider simple rank-one Lie groups $SO(n, 1)$, $SU(n, 1)$ and $Sp(n ,1)$ ($n>1$). They are the isometry groups of real, complex and quaternionic hyperbolic spaces respectively.

By a result of Kostant, the trivial representation of $Sp(n ,1)$ is isolated in the space of irreducible unitary representations on Hilbert spaces. That is, $Sp(n ,1)$ has Kazhdan’s property (T) which is equivalent to the vanishing of 1st cohomology of the group in all unitary representations. This is in contrast to the case of $SO(n ,1)$ and $SU(n ,1)$ where they have the Haagerup approximation property, a strong negation of property (T).

This dichotomy between $SO(n ,1)$, $SU(n ,1)$ and $Sp(n ,1)$ disappears when we consider so-called uniformly bounded representations on Hilbert spaces. By a result of Cowling in 1980’s, the trivial representation of $Sp(n ,1)$ is no longer isolated in the space of uniformly bounded representations. Moreover, there is a uniformly bounded representation of $Sp(n ,1)$ with non-zero first cohomology group.

The goal of this talk is to describe these facts.

Mon, 08 Nov 2021
14:15
L4

Deformation uniqueness of Calabi-Yau metrics with maximal volume growth

Shih-Kai Chiu
((Oxford University))
Abstract

It is expected that complete noncompact Calabi-Yau manifolds are in some sense governed by their asymptotics at infinity. In the maximal volume growth case, the asymptotics at infinity are given by Calabi-Yau cones. We are interested in deformations of such metrics that fix the asymptotic cones at infinity. In the asymptotically conical case, Conlon-Hein proved uniqueness under such deformations. Their method is based on the corresponding linearized problem, namely the study of subquadratic harmonic functions. We generalize their work to the maximal volume growth case, allowing the tangent cones at infinity to have non-isolated singularities. Part of the talk is based on work in progress joint with Gabor Szekelyhidi.

Mon, 08 Nov 2021

14:00 - 15:00
Virtual

STRUCTURED (IN) FEASIBILITY: NONMONOTONE OPERATOR SPLITTING IN NONLINEAR SPACES

Russell Luke
(University of Göttingen)
Abstract

The success of operator splitting techniques for convex optimization has led to an explosion of methods for solving large-scale and non convex optimization problems via convex relaxation. 

This success is at the cost of overlooking direct approaches to operator splitting that embrace some of the more inconvenient aspects of many model problems, namely nonconvexity, non smoothness and infeasibility.  I will introduce some of the tools we have developed for handling these issues, and present sketches of the basic results we can obtain.

The formalism is in general metric spaces, but most applications have their basis in Euclidean spaces.  Along the way I will try to point out connections to other areas of intense interest, such as optimal mass transport.

Mon, 08 Nov 2021
13:00
L2

TBA

Matteo Sacchi
(Oxford)
Further Information

NOTE UNUSUAL TIME: 1pm

Abstract
 In this talk I will discuss an algorithm to piecewise dualise linear quivers into their mirror duals. This applies to the 3d N=4 version of mirror symmetry as well as its recently introduced 4d counterpart, which I will review. The algorithm uses two basic duality moves, which mimic the local S-duality of the 5-branes in the brane set-up of the 3d theories, and the properties of the S-wall. The S-wall is known to correspond to the N=4 T[SU(N)] theory in 3d and I will argue that its 4d avatar corresponds to an N=1 theory called E[USp(2N)], which flows to T[SU(N)] in a suitable 3d limit. All the basic duality moves and S-wall properties needed in the algorithm are derived in terms of some more fundamental Seiberg-like duality, which is the Intriligator--Pouliot duality in 4d and the Aharony duality in 3d.

 

Fri, 05 Nov 2021
16:00
N3.12

Holographic Duals of Argyres-Douglas Theories

Federico Bonetti
(Oxford University)
Further Information

This seminar will only be in person.

Abstract

Superconformal field theories (SCFTs) of Argyres-Dougles type are inherently strongly coupled and provide a window onto remarkable non-perturbative phenomena (such as mutually non-local massless dyons and relevant Coulomb branch operators of fractional dimension). I am going to discuss the first explicit proposal for the holographic duals of a class of SCFTs of Argyres-Douglas type. The theories under examination are realised by a stack of M5-branes wrapped on a sphere with one irregular puncture and one regular puncture. In the dual 11d supergravity solutions, the irregular puncture is realised as an internal M5-brane source.

Fri, 05 Nov 2021

15:30 - 16:30
C6

Short talks from Algebra PhDs

Algebra DPhil students
(University of Oxford)
Further Information

A collection of bite-size 10-15 minute talks from current DPhil students in the Algebra group. The talks will be accessible to masters students and above.

With plenty of opportunity to chat to current students about what doing a PhD in algebra and representation theory is like!

Fri, 05 Nov 2021

15:00 - 16:00
Virtual

Why should one care about metrics on (multi) persistent modules?

Wojciech Chacholski
(KTH)
Abstract

What do we use metrics on persistent modules for? Is it only to asure  stability of some constructions? 

In my talk I will describe why I care about such metrics, show how to construct a rich space of them and illustrate how  to use

them for analysis. 

Fri, 05 Nov 2021

14:00 - 15:00
L3

Ensuring chemical safety using maths not rats

Dr Andrew Worth
(Directorate General Joint Research Centre European Commission)
Abstract

This presentation will focus on the role of mathematical modelling and predictive toxicology in the safety assessment of chemicals and consumer products. The starting point will be regulatory assessment of chemicals based on their potential for harming human health or the environment. This will set the scene for describing current practices in the development and application of mathematical and computational models. A wide variety of methodological approaches are employed, ranging from relatively simple statistical models to more advanced machine learning approaches. The modelling context also ranges from discovering the underlying mechanisms of chemical toxicity to the safe and sustainable design of chemical products. The main modelling approaches will be reviewed, along with the challenges and opportunities associated with their use.  The presentation will conclude by identifying current research needs, including progress towards a Unified Theory of Chemical Toxicology.

Fri, 05 Nov 2021

14:00 - 15:00
L6

Carbon capture and storage in layered porous reservoirs

Graham Benham
(Cambridge)
Abstract

The injection of CO2 into porous subsurface reservoirs is a technological means for removing anthropogenic emissions, which relies on a series of complex porous flow properties. During injection of CO2 small-scale heterogeneities, often in the form of sedimentary layering, can play a significant role in focusing the flow of less viscous CO2 into high permeability pathways, with large-scale implications for the overall motion of the CO2 plume. In these settings, capillary forces between the CO2 and water preferentially rearrange CO2 into the most permeable layers (with larger pore space), and may accelerate plume migration by as much as 200%. Numerous factors affect overall plume acceleration, including the structure of the layering, the permeability contrast between layers, and the playoff between the capillary, gravitational and viscous forces that act upon the flow. However, despite the sensitivity of the flow to these heterogeneities, it is difficult to acquire detailed field measurements of the heterogeneities owing to the vast range of scales involved, presenting an outstanding challenge. As a first step towards tackling this uncertainty, we use a simple modelling approach, based on an upscaled thin-film equation, to create ensemble forecasts for many different types and arrangements of sedimentary layers. In this way, a suite of predictions can be made to elucidate the most likely scenarios for injection and the uncertainty associated with such predictions. 

Thu, 04 Nov 2021

16:00 - 17:00
L3

Blow-up in the supercooled Stefan problem with noise: unstable states and discontinuity of the temperature

ANDREAS SOJMARK
(University of Oxford)
Abstract

Following on from Christoph's talk last week, I will present a version of the supercooled Stefan problem with noise. I will start by discussing the physical intuition and then give a probabilistic representation of solutions. From there, I will identify a simple relationship between the initial heat profile and a single parameter for how the liquid solidifies, which, if violated, forces the temperature to develop a discontinuity in finite time with positive probability. On the other hand, when the relationship is satisfied, the temperature remains globally continuous with probability one. The work is part of a new preprint that should soon be available on arXiv.

 

Thu, 04 Nov 2021
14:00
L4

Rational approximation and beyond, or, What I did during the pandemic

Nick Trefethen
(Mathematical Institute (University of Oxford))
Abstract

The past few years have been an exciting time for my work related to rational approximation.  This talk will present four developments:

1. AAA approximation (2016, with Nakatsukasa & Sète)
2. Root-exponential convergence and tapered exponential clustering (2020, with Nakatsukasa & Weideman)
3. Lightning (2017-2020, with Gopal & Brubeck)
4. Log-lightning (2020-21, with Nakatsukasa & Baddoo)

Two other topics will not be discussed:

X. AAA-Lawson approximation (2018, with Nakatsukasa)
Y. AAA-LS approximation (2021, with Costa)

Thu, 04 Nov 2021
14:00
L6

Higher Form Symmetries: Part 1

Mateo Galdeano
((Oxford University))
Further Information

Junior strings is a seminar series where DPhil students present topics of comment interest that do not necessarily overlap with their own research areas. This is primarly aimed at PhD students and post-docs but everyone is welcome.

Thu, 04 Nov 2021

12:00 - 13:00
L3

Active Matter and Transport in Living Cells

Mike Shelley
(Courant Institute of Mathematical Sciences)
Further Information
Mike Shelley is Lilian and George Lyttle Professor of Applied Mathematics & Professor of Mathematics, Neural Science, and Mechanical Engineering, and Co-Director of the Applied Mathematics Laboratory. He is also Director of the Center for Computational Biology, and Group Leader of Biophysical ModelingThe Flatiron Institute, Simons Foundation
Abstract

The organized movement of intracellular material is part of the functioning of cells and the development of organisms. These flows can arise from the action of molecular machines on the flexible, and often transitory, scaffoldings of the cell. Understanding phenomena in this realm has necessitated the development of new simulation tools, and of new coarse-grained mathematical models to analyze and simulate. In that context, I'll discuss how a symmetry-breaking "swirling" instability of a motor-laden cytoskeleton may be an important part of the development of an oocyte, modeling active material in the spindle, and what models of active, immersed polymers tell us about chromatin dynamics in the nucleus.

Thu, 04 Nov 2021
11:30
Virtual

Martin's Maximum^++ implies the P_max axiom (*) -- Part II

David Aspero
(University of East Anglia)
Abstract

(This is Part II of a two-part talk.)

Forcing axioms spell out the dictum that if a statement can be forced, then it is already true. The P_max axiom (*) goes beyond that by claiming that if a statement is consistent, then it is already true. Here, the statement in question needs to come from a resticted class of statements, and "consistent" needs to mean "consistent in a strong sense". It turns out that (*) is actually equivalent to a forcing axiom, and the proof is by showing that the (strong) consistency of certain theories gives rise to a corresponding notion of forcing producing a model of that theory. Our result builds upon earlier work of R. Jensen and (ultimately) Keisler's "consistency properties".

Wed, 03 Nov 2021

16:00 - 17:00
C5

Grothendieck-Teichmuller Theory: Mapping Class Groups and Galois Groups

Luciana Basualdo Bonatto
(University of Oxford)
Abstract

In this talk, I will discuss the important Grothendieck conjecture which originated Grothendieck-Teichmuller Theory, a bridge between Topology and Number Theory. On the geometric side, there is the study of automorphisms of mapping class groups that satisfy compatibility conditions with respect to subsurface inclusions. On the other side, there is the study of the absolute Galois group of the rationals, one of the most important objects in Number Theory today.
In my talk, I will introduce these objects and discuss the recent progress that has been made in understanding such automorphisms of mapping class groups. No background in Number Theory or Galois Theory is required.

Wed, 03 Nov 2021

14:00 - 15:00
Virtual

Scattering Amplitudes and Cluster Algebras

Anders Schreiber
Abstract

In this talk we will study scattering amplitudes N=4 super-Yang-Mills theory. In this theory, scattering amplitudes are known to be functions of cluster variables of Gr(4,n) and certain algebraic functions of cluster variables. We will give an overview of how this cluster algebraic structure manifests, and will exploit it in an algorithm for computing symbol alphabets by solving matrix equations of the form C.Z = 0 associated with plabic graphs. These matrix equations associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. We are able to reproduce all known algebraic functions of cluster variables appearing in known symbol alphabets. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Wed, 03 Nov 2021

10:00 - 12:00
L3

Finite Element Exterior Calculus - Part 2

Kaibu Hu
(Oxford University)
Further Information

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 02 Nov 2021

15:30 - 16:30
L6

Unitary Invariant Ensembles and Symmetric Function Theory

Bhargavi Jonnadula
(University of Oxford)
Abstract

In this talk, we use tools from representation theory and symmetric function theory to compute correlations of eigenvalues of unitary invariant ensembles. This approach provides a route to write exact formulae for the correlations, which further allows us to extract large matrix asymptotics and study universal properties.