Tue, 07 Jun 2011

14:30 - 15:30
L3

Average-case performance of three-dimensional assignment heuristics

Gregory Sorkin
(LSE)
Abstract

The 2-dimensional assignment problem (minimum cost matching) is solvable in polynomial time, and it is known that a random instance of size n, with entries chosen independently and uniformly at random from [0,1], has expected cost tending to π^2/6.  In dimensions 3 and higher, the "planar" assignment problem is NP-complete, but what is the expected cost for a random instance, and how well can a heuristic do?  In d dimensions, the expected cost is of order at least n^{2-d} and at most ln n times larger, but the upper bound is non-constructive.  For 3 dimensions, we show a heuristic capable of producing a solution within a factor n^ε of the lower bound, for any constant ε, in time of order roughly n^{1/ε}.  In dimensions 4 and higher, the question is wide open: we don't know any reasonable average-case assignment heuristic.

Tue, 07 Jun 2011
13:15
DH 1st floor SR

Modelling Viral Persistence in the Presence of Host Immunity in Chronic HTLV-I Infection

Aarom Lim
(University of Oxford))
Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterised by a high proviral load and risk of developing ATL, an aggressive blood cancer, or HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, chronically activated HTLV-I-specific CTL response, yet the virus has developed complex mechanisms to evade host immunity and avoid viral clearance. Moreover, identification of determinants to the development of disease has thus far been elusive.

 This model is based on a recent experimental hypothesis for the persistence of HTLV-I infection and is a direct extension of the model studied by Li and Lim (2011). A four-dimensional system of ordinary differential equations is constructed that describes the dynamic interactions among viral expression, infected target cell activation, and the human immune response. Focussing on the particular roles of viral expression and host immunity in chronic HTLV-I infection offers important insights to viral persistence and pathogenesis.

Mon, 06 Jun 2011
17:00
Gibson 1st Floor SR

Some Recent Results on the Doi-Smoluchowski Equation Which Arises in the Modeling of Nematic Liquid Crystals

Jesenko Vukadinovic
(City University of New York)
Abstract

The talk will address two recent results concerning the Doi-Smoluchowski equation and the Onsager model for nematic liquid crystals. The first result concerns the existence of inertial manifolds for the Smloluchowski equation both in the presence and in the absence of external flows. While the Doi-Smoluchowski equation as a PDE is an infinite-dimensional dynamical system, it reduces to a system of ODEs on a set coined inertial manifold, to which all other solutions converge exponentially fast.  The proof uses a non-standard method, which consists in circumventing the restrictive spectral-gap condition, which the original equation fails to satisfy by transforming the equation into a form that does. 

The second result concerns the isotropic-nematic phase transition for the Onsager model on the circle using more complicated potentials than the Maier-Saupe potential. Exact multiplicity of steady-states on the circle is proven for the two-mode truncation of the Onsager potential.    

Mon, 06 Jun 2011
17:00
Oxford-Man Institute

tba

Sasha Grigoryan
(Bielefeld University)
Mon, 06 Jun 2011
15:45
Oxford-Man Institute

The one-dimensional Kardar-Parisi -Zhang equation and its universality class

Herbert Spohn
Abstract

In 1986 Kardar, Parisi, and Zhang proposed a stochastic PDE for the motion of driven interfaces,
in particular for growth processes with local updating rules. The solution to the 1D KPZ equation
can be approximated through the weakly asymmetric simple exclusion process. Based on work of 
Tracy and Widom on the PASEP, we obtain an exact formula for the one-point generating function of the KPZ
equation in case of sharp wedge initial data. Our result is valid for all times, but of particular interest is
the long time behavior, related to random matrices, and the finite time corrections. This is joint work with 
Tomohiro Sasamoto.

Mon, 06 Jun 2011
14:15
Oxford-Man Institute

Modified equations, backward error analysis and numerical methods for stiff stochastic differential equations.

Konstantinos Zygalakis
(University of Oxford)
Abstract

: Backward error analysis is a technique that has been extremely successful in understanding the behaviour of numerical methods for ordinary differential equations.  It is possible to fit an ODE (the so called modified equation) to a numerical method to very high accuracy. Backward error analysis has been of particular importance in the numerical study of Hamiltonian problems, since it allows to approximate symplectic numerical methods by a perturbed Hamiltonian system, giving an approximate statistical mechanics for symplectic methods. 

Such a systematic theory in the case of numerical methods for stochastic differential equations (SDEs) is currently lacking. In this talk we will describe a general framework for deriving modified equations for SDEs with respect to weak convergence. We will start by quickly recapping of how to derive modified equations in the case of ODEs and describe how these ideas can be generalized in the case of SDEs. Results will be presented for first order methods such as the Euler-Maruyama and the Milstein method. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we will derive a SDE that the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations and in the calculation of effective diffusivities will also be discussed, as well as the use of modified equations  as a tool for constructing higher order methods for stiff stochastic differential equations.

This is joint work with A. Abdulle (EPFL). D. Cohen (Basel), G. Vilmart (EPFL).

Mon, 06 Jun 2011

12:00 - 13:00
L3

String compactifications on toric varieties

Magdalena Larfors
(LMU Munich)
Abstract
In the absence of background fluxes and sources, compactifying string theories on Calabi-Yau three-folds leads to supersymmetric solutions. Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the three-fold to break the Calabi-Yau conditions, and instead fulfill the weaker geometrical condition of having a reduced structure group. In this talk I will demonstrate that three-dimensional smooth, compact, toric varieties can have reduced structure group, and thus be suitable for flux compactifications of string theory. Since the class of three-dimensional SCTV is large, this is promising for the construction of new, phenomenologically interesting string theory vacua.
Fri, 03 Jun 2011
16:30
L2

‘Aspects of the work of Dan Quillen’.

Prof Graeme Segal
(Oxford)
Abstract

Graeme Segal shall describe some of Dan Quillen’s work, focusing on his amazingly productive period around 1970, when he not only invented algebraic K-theory in the form we know it today, but also opened up several other lines of research which are still in the front line of mathematical activity. The aim of the talk will be to give an idea of some of the mathematical influences which shaped him, of his mathematical perspective, and also of his style and his way of approaching mathematical problems.

Fri, 03 Jun 2011
14:15
DH 1st floor SR

Cross hedging with futures in a continuous-time model with a stationary spread

Prof Stefan Ankirchner
(University of Bonn)
Abstract

When managing risk, frequently only imperfect hedging instruments are at hand.

We show how to optimally cross-hedge risk when the spread between the hedging

instrument and the risk is stationary. At the short end, the optimal hedge ratio

is close to the cross-correlation of the log returns, whereas at the long end, it is

optimal to fully hedge the position. For linear risk positions we derive explicit

formulas for the hedge error, and for non-linear positions we show how to obtain

numerically effcient estimates. Finally, we demonstrate that even in cases with no

clear-cut decision concerning the stationarity of the spread it is better to allow for

mean reversion of the spread rather than to neglect it.

The talk is based on joint work with Georgi Dimitroff, Gregor Heyne and Christian Pigorsch.

Fri, 03 Jun 2011

12:00 - 13:00
SR1

Some random facts about the Weil conjectures

John Calabrese
(University of Oxford)
Abstract

I'll start by defining the zeta function and stating the Weil conjectures (which have actually been theorems for some time now). I'll then go on by saying things like "Weil cohomology", "standard conjectures" and "Betti numbers of the Grassmannian". Hopefully by the end we'll all have learned something, including me.

Thu, 02 Jun 2011
17:00
L3

"Generalized lattices over local Dedekind-like rings"

Carlo Toffalori - joint work with Gena Puninski
(Florence - Moscow)
Abstract

Recent papers by Butler-Campbell-Kovàcs, Rump, Prihoda-Puninski and others introduce over an order O over a Dedekind domain D a notion of "generalized lattice", meaning a D-projective O-module.

We define a similar notion over Dedekind-like rings -- a class of rings intensively studied by Klingler and Levy. We examine in which cases every generalized lattices is a direct sum of ordinary -- i.e., finitely generated -- lattices. We also consider other algebraic and model theoretic questions about generalized lattices.

Thu, 02 Jun 2011

16:00 - 17:00
DH 1st floor SR

Theory of ac voltammetry for reversible electrochemical systems using multiple scales analysis

Chris Bell
(Imperial College London)
Abstract

Voltammetry is a powerful method for interrogating electrochemical systems. A voltage is applied to an electrode and the resulting current response analysed to determine features of the system under investigation, such as concentrations, diffusion coefficients, rate constants and thermodynamic potentials. Here we will focus on ac voltammetry, where the voltage signal consists of a high frequency sine-wave superimposed on a linear ramp. Using multiple scales analysis, we find analytical solutions for the harmonics of the current response and show how they can be used to determine the system parameters. We also include the effects of capacitance due to the double-layer at the electrode surface and show that even in the presence of large capacitance, the harmonics of the current response can still be isolated using the FFT and the Hanning window.

Thu, 02 Jun 2011

16:00 - 17:00

Class invariants for quartic CM-fields

Marco Streng
(Warwick)
Abstract

I show how invariants of curves of genus 2 can be used for explicitly constructing class fields of

certain number fields of degree 4.

Thu, 02 Jun 2011

14:00 - 15:00
Gibson Grd floor SR

Analysis of a multiscale method for nonlinear nonmonotone elliptic problems

Prof Assyr Abdulle
(Ecole Polytechnique Federale de Lausanne)
Abstract

Following the framework of the heterogeneous multiscale method, we present a numerical method for nonlinear elliptic homogenization problems. We briefly review the numerical, relying on an efficient coupling of macro and micro solvers, for linear problems. A fully discrete analysis is then given for nonlinear (nonmonotone) problems, optimal convergence rates in the H1 and L2 norms are derived and the uniqueness of the method is shown on sufficiently fine macro and micro meshes.

Numerical examples confirm the theoretical convergence rates and illustrate the performance and versatility of our approach.

Thu, 02 Jun 2011
13:00
DH 1st floor SR

Pricing and calibration of CDOs in a multi-dimensional structural jump-diffusion model'

Karolina Bujok
Abstract

We consider a multidimensional structural credit model, where each company follows a jump-diffusion process and is connected with other companies via global factors. We assume that a company can default both expectedly, due to the diffusion part, and unexpectedly, due to the jump part, by a sudden fall in a company's value as a result of a global shock. To price CDOs efficiently, we use ideas, developed by Bush et al.

for diffusion processes, where the joint density of the portfolio is approximated by a limit of the empirical measure of asset values in the basket. We extend the method to jump-diffusion settings. In order to check if our model is flexible enough, we calibrate it to CDO spreads from pre-crisis and crisis periods.

For both data sets, our model fits the observed spreads well, and what is important, the estimated parameters have economically convincing values.

We also study the convergence of our method to basic Monte Carlo and conclude that for a CDO, that typically consists of 125 companies, the method gives close results to basic Monte Carlo."

Thu, 02 Jun 2011
11:00
L3

"Abstract elementary classes and absolute Galois groups"

Franziska Jahnke
(Oxford)
Abstract

The class of fields with a given absolute Galois group is in general not an elementary class. Looking instead at abstract elementary classes we can show that this class, as well as the class of pairs (F,K), where F is a function field in one variable over a perfect base field K with a fixed absolute Galois group, is abstract elementary. The aim is to show categoricity for the latter class. In this talk, we will be discussing some consequences of basic properties of these two classes.

Wed, 01 Jun 2011

16:00 - 17:00
SR1
Wed, 01 Jun 2011

16:00 - 17:30
L3

A bitopological point-free approach to compactification

Olaf Klinke
(University of Birmingham)
Abstract

It is known for long that the set of possible compactifications of a topological space (up to homeomorphism) is in order-preserving bijection to "strong inclusion" relations on the lattice of open sets. Since these relations do not refer to points explicitly, this bijection has been generalised to point-free topology (a.k.a. locales). The strong inclusion relations involved are typically "witnessed" relations. For example, the Stone-Cech compactification has a strong inclusion witnessed by real-valued functions. This makes it natural to think of compactification in terms of d-frames, a category invented by Jung and Moshier for bitopological Stone duality. Here, a witnessed strong inclusion is inherent to every object and plays a central role.

We present natural analogues of the topological concepts regularity, normality, complete regularity and compactness in d-frames. Compactification is then a coreflection into the category of d-frames dually equivalent to compact Hausdorff spaces. The category of d-frames has a few surprising features. Among them are:

  • The real line with the bitopology of upper and lower semicontinuity admits precisely one compactification, the extended reals.
  • Unlike in the category of topological spaces (or locales), there is a coreflection into the subcategory of normal d-frames, and every compactification can be factored as "normalisation" followed by Stone-Cech compactification.
Wed, 01 Jun 2011

11:30 - 12:30
ChCh, Tom Gate, Room 2

Sophic groups

Elisabeth Fink
(University of Oxford)
Abstract

The talk will start with the definition of amenable groups. I will discuss various properties and interesting facts about them. Those will be underlined with representative examples. Based on this I will give the definition and some basic properties of sofic groups, which only emerged quite recently. Those groups are particularly interesting as it is not know whether every group is sofic.

Tue, 31 May 2011

14:30 - 15:30
L3

Component structure of the vacant set induced by a random walk on a random graph

Colin Cooper
(King's College London)
Abstract

We consider random walks on two classes of random graphs and explore the likely structure of the the set of unvisited vertices or vacant set. In both cases, the size of the vacant set $N(t)$ can be obtained explicitly as a function of $t$. Let $\Gamma(t)$ be the subgraph induced by the vacant set. We show that, for random graphs $G_{n,p}$ above the connectivity threshold, and for random regular graphs $G_r$, for constant $r\geq 3$, there is a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for $t\leq (1-\epsilon)t^*$ we have a unique giant plus components of  size $O(\log n)$ and for $t\geq (1+\epsilon)t^*$ we have only components of  size $O(\log n)$.

In the case of $G_r$ we describe the likely degree sequence, size of the giant component and structure of the small ($O(\log n)$) size components.

Tue, 31 May 2011
12:00
L3

Cancelled

Prof S Klainerman
(Princeton University)
Mon, 30 May 2011

17:00 - 18:00
Gibson 1st Floor SR

Cancelled

Sergiu Kleinerman
(Princeton University)
Abstract

Please note that this seminar has been cancelled due to unforeseen circumstances.

Fri, 27 May 2011
14:15
DH 1st floor SR

Regularity of Value Functions for Nonsmooth Utility Maximization Problems

Dr Harry Zheng
(Imperial College London)
Abstract

In this talk we show that there exists a smooth classical solution to the HJB equation for a large class of constrained problems with utility functions that are not necessarily differentiable or strictly concave.

The value function is smooth if admissible controls satisfy an integrability condition or if it is continuous on the closure of its domain.

The key idea is to work on the dual control problem and the dual HJB equation. We construct a smooth, strictly convex solution to the dual HJB equation and show that its conjugate function is a smooth, strictly concave solution to the primal HJB equation satisfying the terminal and boundary conditions

Fri, 27 May 2011

12:00 - 13:00
SR1

Derived categories of coherent sheaves and motives

Shane Kelly
(Universite Paris 13)
Abstract

The derived category of a variety has (relatively) recently come into play as an invariant of the variety, useful as a tool for classification. As the derived category contains cohomological information about the variety, it is perhaps a natural question to ask how close the derived category is to the motive of a variety.

We will begin by briefly recalling Grothendieck's category of Chow motives of smooth projective varieties, recall the definition of Fourier-Mukai transforms, and state some theorems and examples. We will then discuss some conjectures of Orlov http://arxiv.org/abs/math/0512620, the most general of which is: does an equivalence of derived categories imply an isomorphism of motives?

Fri, 27 May 2011

10:00 - 11:15
DH 1st floor SR

POSTPONED

John Fox
(Department of Engineering Science, University of Oxford)
Abstract

Due to illness the speaker has been forced to postpone at short notice. A new date will be announced as soon as possible.

Thu, 26 May 2011
17:00
L3

"Stability classes of partial types"

Enrique Casanovas
(Barcelona)
Abstract

"We will talk on stability, simplicity, nip, etc of partial types. We will review some known results and we will discuss some open problems."

Thu, 26 May 2011

16:00 - 17:00
DH 1st floor SR

Electrified multi-fluid film flows

Demetrios Papageorgiou
(Imperial College London)
Abstract

Flows involving immiscible liquids are encountered in a variety of industrial and natural processes. Recent applications in micro- and nano-fluidics have led to a significant scientific effort whose aim (among other aspects) is to enable theoretical predictions of the spatiotemporal dynamics of the interface(s) separating different flowing liquids. In such applications the scale of the system is small, and forces such as surface tension or externally imposed electrostatic forces compete and can, in many cases, surpass those of gravity and inertia. This talk will begin with a brief survey of applications where electrohydrodynamics have been used experimentally in micro-lithography, and experiments will be presented that demonstrate the use of electric fields in producing controlled encapsulated droplet formation in microchannels.

The main thrust of the talk will be theoretical and will mostly focus on the paradigm problem of the dynamics of electrified falling liquid films over topographically structured substrates.

Evolution equations will be developed asymptotically and their solutions will be compared to direct simulations in order to identify their practicality. The equations are rich mathematically and yield novel examples of dissipative evolutionary systems with additional effects (typically these are pseudo-differential operators) due to dispersion and external fields.

The models will be analysed (we have rigorous results concerning global existence of solutions, the existence of dissipative dynamics and an absorbing set, and analyticity), and accurate numerical solutions will be presented to describe the large time dynamics. It is found that electric fields and topography can be used to control the flow.Time permitting, I will present some recent results on transitions between convective to absolute instabilities for film flows over periodic topography.

Thu, 26 May 2011

16:00 - 17:00
L3

Iwasawa theory for modular forms

David Loeffler
(Warwick)
Abstract

he Iwasawa theory of elliptic curves over the rationals, and more
generally of modular forms, has mostly been studied with the
assumption that the form is "ordinary" at p -- i.e. that the Hecke
eigenvalue is a p-adic unit. When this is the case, the dual of the
p-Selmer group over the cyclotomic tower is a torsion module over the
Iwasawa algebra, and it is known in most cases (by work of Kato and
Skinner-Urban) that the characteristic ideal of this module is
generated by the p-adic L-function of the modular form.

I'll talk about the supersingular (good non-ordinary) case, where
things are slightly more complicated: the dual Selmer group has
positive rank, so its characteristic ideal is zero; and the p-adic
L-function is unbounded and hence doesn't lie in the Iwasawa algebra.
Under the rather restrictive hypothesis that the Hecke eigenvalue is
actually zero, Kobayashi, Pollack and Lei have shown how to decompose
the L-function as a linear combination of Iwasawa functions and
explicit "logarithm-like" series, and to modify the definition of the
Selmer group correspondingly, in order to formulate a main conjecture
(and prove one inclusion). I will describe joint work with Antonio Lei
and Sarah Zerbes where we extend this to general supersingular modular
forms, using methods from p-adic Hodge theory. Our work also gives
rise to new phenomena in the ordinary case: a somewhat mysterious
second Selmer group and L-function, which is related to the
"critical-slope L-function" studied by Pollack-Stevens and Bellaiche.


Thu, 26 May 2011

14:00 - 15:00
Gibson Grd floor SR

IDR -- A New Class of Krylov Subspace Solvers: Benefits and Drawbacks

Dr Jens-Peter Zemke
(Hamburg-Harburg University of Technology)
Abstract

This talk is about the Induced Dimension Reduction (IDR) methods developed by Peter Sonneveld and, more recently, Martin van Gijzen. We sketch the history, outline the underlying principle, and give a few details about different points of view on this class of Krylov subspace methods. If time permits, we briefly outline some recent developments in this field and the benefits and drawbacks of these and IDR methods in general.

Thu, 26 May 2011
13:00
DH 1st floor SR

How do we build a math-finance setup when we do not have a probability space but we do have market prices?

Jan Obloj
Abstract

In this talk I want to ask how to create a coherent mathematical framework for pricing and hedging which starts with the information available in the market and does not assume a given probabilistic setup. This calls for re-definition of notions of arbitrage and trading and, subsequently, for a ``probability-free first fundamental theorem of asset pricing". The new setup should also link with a classical approach if our uncertainty about the model vanishes and we are convinced a particular probabilistic structure holds. I explore some recent results but, predominantly, I present the resulting open questions and problems. It is an ``internal talk" which does not necessarily present one paper but rather wants to engage into a discussion. Ideas for the talk come in particular from joint works with Alex Cox and Mark Davis.

Thu, 26 May 2011

12:30 - 13:30
Gibson 1st Floor SR

Going beyond Serrin's endpoint regularity criterion for Navier-Stokes

Fabrice Planchon
(Universite de Nice (France))
Abstract

Solutions which are time-bounded in L^3 up to time T can be continued

past this time, by a landmark result of Escauriaza-Seregin-Sverak,

extending Serrin's criterion. On the other hand, the local Cauchy

theory holds up to solutions in BMO^-1; we aim at describing how one

can obtain intermediate regularity results, assuming a priori bounds

in negative regularity Besov spaces.

This is joint work with J.-Y. Chemin, Isabelle Gallagher and Gabriel

Koch.

Wed, 25 May 2011

16:00 - 17:00
SR1

Homogeneous Einstein metrics and the graph theorem.

Maria Buzano
(University of Oxford)
Abstract

First of all, we are going to recall some basic facts and definitions about homogeneous Riemannian manifolds. Then we are going to talk about existence and non-existence of invariant Einstein metrics on compact homogeneous manifolds. In this context, we have that it is possible to associate to every homogeneous space a graph. Then, the graph theorem of Bohm, Wang and Ziller gives an existence result of invariant Einstein metrics on a compact homogeneous space, based on properties of its graph. We are going to discuss this theorem and sketch its proof.

Wed, 25 May 2011

12:45 - 13:45
Oxford-Man Institute

Explicit construction of a dynamic Bessel bridge of dimension 3

Dr Umut Cetin (London School of Economics)
Abstract

Given a deterministically time-changed Brownian motion Z starting from 1, whose time-change V (t) satisfies V (t) > t for all t > 0, we perform an explicit construction of a process X which is Brownian motion in its own filtration and that hits zero for the first time at V (S), where S := inf {t > 0 : Z_t = 0}. We also provide the semimartingale decomposition of X under the filtration jointly generated by X and Z. Our construction relies on a combination of enlargement of filtration and filtering techniques. The resulting process X may be viewed as the analogue of a 3-dimensional Bessel bridge starting from 1 at time 0 and ending at 0 at the random time V (S). We call this a dynamic Bessel bridge since S is not known at time 0 but is slowly revealed in time by observing Z. Our study is motivated by insider trading models with default risk. (this is a joint work with Luciano Campi and Albina Danilova)

Tue, 24 May 2011
17:00
L2

``An analogue of the Conjecture of Dixmier is true for the algebra of polynomial integro-differential operators''

Prof. V. Bavula
(Sheffield)
Abstract

In 1968, Dixmier posed six problems for the algebra of polynomial

  differential operators, i.e. the Weyl algebra. In 1975, Joseph

solved the third and sixth problems and, in 2005, I solved the

  fifth problem and gave a positive solution to the fourth problem

  but only for homogeneous differential operators. The remaining three problems are still open. The first problem/conjecture of Dixmier (which is equivalent to the Jacobian Conjecture as was shown in 2005-07 by Tsuchimito, Belov and Kontsevich) claims that the Weyl algebra `behaves'

like a finite field. The first problem/conjecture of

  Dixmier:   is it true that an algebra endomorphism of the Weyl

  algebra an automorphism? In 2010, I proved that this question has

  an affirmative answer for the algebra of polynomial

  integro-differential operators. In my talk, I will explain the main

  ideas, the structure of the proof and recent progress on the first problem/conjecture of Dixmier.

 

Tue, 24 May 2011

14:30 - 15:30
L3

The degree distribution of random planar graphs

Angelika Steger
(ETH Zurich)
Abstract

A random planar graph $P_n$ is a graph drawn uniformly at random from the class of all (labelled) planar graphs on $n$ vertices. In this talk we show that with probability $1-o(1)$ the number of vertices of degree $k$ in $P_n$ is very close to a quantity $d_k n$ that we determine explicitly. Here $k=k(n) \le c \log n$. In the talk our main emphasis will be on the techniques for proving such results. (Joint work with Kosta Panagiotou.)