16:00
16:00
The Function-Rips Multifiltration as an Estimator
Abstract
Say we want to view the function-Rips multifiltration as an estimator. Then, what is the target? And what kind of consistency, bias, or convergence rate, should we expect? In this talk I will present on-going joint work with Ethan André (Ecole Normale Supérieure) that aims at laying the algebro-topological ground to start answering these questions.
Modelling cells in one-dimension: diverse migration modes, emergent oscillations on junctions and multicellular "trains"
Abstract
Motile cells inside living tissues often encounter junctions, where their path branches into several alternative directions of migration. We present a theoretical model of cellular polarization for cells migrating along one-dimensional lines, exhibiting diverse migration modes. When arriving at a symmetric Y-junction and extending protrusions along the different paths that emanate from the junction. The model predicts the spontaneous emergence of deterministic oscillations between competing protrusions, whereby the cellular polarization and growth alternates between the competing protrusions. These predicted oscillations are found experimentally for two different cell types, noncancerous endothelial and cancerous glioma cells, migrating on patterned network of thin adhesive lanes with junctions. Finally we present an analysis of the migration modes of multicellular "trains" along one-dimensional tracks.
Junior Algebra Social
Abstract
The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.
12:00
Topological Recursion: Introduction, Overview and Applications
Abstract
16:00
Multireference Alignment for Lead-Lag Detection in Multivariate Time Series and Equity Trading
Join us for refreshments from 330 outside L3.
Abstract
We introduce a methodology based on Multireference Alignment (MRA) for lead-lag detection in multivariate time series, and demonstrate its applicability in developing trading strategies. Specifically designed for low signal-to-noise ratio (SNR) scenarios, our approach estimates denoised latent signals from a set of time series. We also investigate the impact of clustering the time series on the recovery of latent signals. We demonstrate that our lead-lag detection module outperforms commonly employed cross-correlation-based methods. Furthermore, we devise a cross-sectional trading strategy that capitalizes on the lead-lag relationships uncovered by our approach and attains significant economic benefits. Promising backtesting results on daily equity returns illustrate the potential of our method in quantitative finance and suggest avenues for future research.
16:00
Traces of random matrices over F_q, and short character sums
Abstract
Morita equivalence for operator systems
Abstract
In ring theory, Morita equivalence is an invariant for many properties, generalising the isomorphism of commutative rings. A strong Morita equivalence for selfadjoint operator algebras was introduced by Rieffel in the 60s, and works as a correspondence between their representations. In the past 30 years, there has been an interest to develop a similar theory for nonselfadjoint operator algebras and operator spaces with much success. Taking motivation from recent work of Connes and van Suijlekom, we will present a Morita theory for operator systems. We will give equivalent characterizations of Morita equivalence via Morita contexts, bihomomoprhisms and stable isomorphisms, while we will highlight properties that are preserved in this context. Time permitted we will provide applications to rigid systems, function systems and non-commutative graphs. This is joint work with George Eleftherakis and Ivan Todorov.
A preconditioner with low-rank corrections based on the Bregman divergence
Abstract
We present a general framework for preconditioning Hermitian positive definite linear systems based on the Bregman log determinant divergence. This divergence provides a measure of discrepancy between a preconditioner and a target matrix, giving rise to
the study of preconditioners given as the sum of a Hermitian positive definite matrix plus a low-rank correction. We describe under which conditions the preconditioner minimises the $\ell^2$ condition number of the preconditioned matrix, and obtain the low-rank
correction via a truncated singular value decomposition (TSVD). Numerical results from variational data assimilation (4D-VAR) support our theoretical results.
We also apply the framework to approximate factorisation preconditioners with a low-rank correction (e.g. incomplete Cholesky plus low-rank). In such cases, the approximate factorisation error is typically indefinite, and the low-rank correction described by the Bregman divergence is generally different from one obtained as a TSVD. We compare these two truncations in terms of convergence of the preconditioned conjugate gradient method (PCG), and show numerous examples where PCG converges to a small tolerance using the proposed preconditioner, whereas PCG using a TSVD-based preconditioner fails. We also consider matrices arising from interior point methods for linear programming that do not admit such an incomplete factorisation by default, and present a robust incomplete Cholesky preconditioner based on the proposed methodology.
The talk is based on papers with Martin S. Andersen (DTU).
Coupling rheology and segregation in granular flows
Professor Nico Gray is based in the Department of Mathematics at the University of Manchester.
This is from his personal website:
My research interests lie in understanding and modelling the flow of granular materials, in small scale experiments, industrial processes and geophysical flows. Current research is aimed at understanding fundamental processes such as the flow past obstacles, shock waves, dead-zones, fluid-solid phase transitions, particle size segregation and pattern formation. A novel and important feature of all my work is the close interplay of theory, numerical computation and experiment to investigate these nonlinear systems. I currently have three active experiments which are housed in two laboratories at the Manchester Centre for Nonlinear Dynamics. You can click on the videos and pictures as well as the adjacent toolbar to find out more about specific problems that I am interested in. |
Abstract
During the last fifteen years, there has been a paradigm shift in the continuum modelling of granular materials; most notably with the development of rheological models, such as the μ(I)-rheology (where μ is the friction and I is the inertial number), but also with significant advances in theories for particle segregation. This talk details theoretical and numerical frameworks (based on OpenFOAM®) which unify these disconnected endeavours. Coupling the segregation with the flow, and vice versa, is not only vital for a complete theory of granular materials, but is also beneficial for developing numerical methods to handle evolving free surfaces. This general approach is based on the partially regularized incompressible μ(I)-rheology, which is coupled to a theory for gravity/shear-driven segregation (Gray & Ancey, J. Fluid Mech., vol. 678, 2011, pp. 353–588). These advection–diffusion–segregation equations describe the evolving concentrations of the constituents, which then couple back to the variable viscosity in the incompressible Navier–Stokes equations. A novel feature of this approach is that any number of differently sized phases may be included, which may have disparate frictional properties. The model is used to simulate the complex particle-size segregation patterns that form in a partially filled triangular rotating drum. There are many other applications of the theory to industrial granular flows, which are the second most common material used after fluids. The same processes also occur in geophysical flows, such as snow avalanches, debris flows and dense pyroclastic flows. Depth-averaged models, that go beyond the μ(I)-rheology, will also be derived to capture spontaneous self-channelization and levee formation, as well as complex segregation-induced flow fingering effects, which enhance the run-out distance of these hazardous flows.
Spectra of surfaces and MCG actions on random covers
Abstract
The Ivanov conjecture is equivalent to the statement that every covering map of surfaces has the so-called Putman-Wieland property. I will discuss my recent work with Vlad Marković, where we prove it for asymptotically all coverings as the degree grows. I will give some overview of our main tool: spectral geometry, which is related to objects like the heat kernel of a hyperbolic surface, or Cheeger connectivity constant.
12:00
A new understanding of the grazing limit
Abstract
The grazing limit of the Boltzmann equation to Landau equation is well-known and has been justified by using cutoff near the grazing angle with some suitable scaling. In this talk, we will present a new approach by applying a natural scaling on the Boltzmann equation. The proof is based on an improved well-posedness theory for the Boltzmann equation without angular cutoff in the regime with an optimal range of parameters so that the grazing limit can be justified directly that includes the Coulomb potential. With this new understanding, the scaled Boltzmann operator in fact can be decomposed into two parts. The first one converges to the Landau operator when the parameter of deviation angle tends to its singular value and the second one vanishes in the limit. Hence, the scaling and limiting process exactly capture the grazing collisions. The talk is based on a recent joint work with Yu-Long Zhou.
Branching selection particle systems and the selection principle.
Abstract
15:00
Profinite invariants of fibered groups
Abstract
A central question in infinite group theory is to determine how much global information about a group is encoded in its set of finite quotients. In this talk, we will discuss this problem in the case of algebraically fibered groups, which naturally generalise fundamental groups of compact manifolds that fiber over the circle. The study of such groups exploits the relationships between the geometry of the classifying space, the dynamics of the monodromy map, and the algebra of the group, and as such draws from all of these areas.
Heights of random trees
Abstract
A rooted tree $T$ has degree sequence $(d_1,\ldots,d_n)$ if $T$ has vertex set $[n]$ and vertex $i$ has $d_i$ children for each $i$ in $[n]$.
I will describe a line-breaking construction of random rooted trees with given degree sequences, as well as a way of coupling random trees with different degree sequences that also couples their heights to one another.
The construction and the coupling have several consequences, and I'll try to explain some of these in the talk.
First, let $T$ be a branching process tree with critical—mean one—offspring distribution, and let $T_n$ have the law of $T$ conditioned to have size $n$. Then the following both hold.
1) $\operatorname{height}(T_n)/\log(n)$ tends to infinity in probability.
2) If the offspring distribution has infinite variance then $\operatorname{height}(T_n)/n^{1/2}$ tends to $0$ in probability. This result settles a conjecture of Svante Janson.
The next two statements relate to random rooted trees with given degree sequences.
1) For any $\varepsilon > 0$ there is $C > 0$ such that the following holds. If $T$ is a random tree with degree sequence $(d_1,\ldots,d_n)$ and at least $\varepsilon n$ leaves, then $\mathbb{E}(\operatorname{height}(T)) < C \sqrt{n}$.
2) Consider any random tree $T$ with a fixed degree sequence such that $T$ has no vertices with exactly one child. Then $\operatorname{height}(T)$ is stochastically less than $\operatorname{height}(B)$, where $B$ is a random binary tree of the same size as $T$ (or size one greater, if $T$ has even size).
This is based on joint work with Serte Donderwinkel and Igor Kortchemski.
13:00
Defect two-point functions in 6d (2,0) theories
Abstract
In this talk, I will discuss correlation functions in 6d (2, 0) theories of two 1/2-BPS operators inserted away from a 1/2-BPS surface defect. In the large central charge limit the leading connected contribution corresponds to sums of tree-level Witten diagram in AdS7×S4 in the presence of an AdS3 defect. I will show that these correlators can be uniquely determined by imposing only superconformal symmetry and consistency conditions, eschewing the details of the complicated effective Lagrangian. I will present the explicit result of all such two-point functions, which exhibits remarkable hidden simplicity.
11:00
Random surfaces and higher algebra (Part II)
Abstract
A representation on the space of paths is a map which is compatible with the concatenation operation of paths, such as the path signature and Cartan development (or equivalently, parallel transport), and has been used to define characteristic functions for the law of stochastic processes. In this talk, we consider representations of surfaces which are compatible with the two distinct algebraic operations on surfaces: horizontal and vertical concatenation. To build these representations, we use the notion of higher parallel transport, which was first introduced to develop higher gauge theories. We will not assume any background in geometry or category theory. This is a continuation of the previous talk based on a recent preprint (https://arxiv.org/abs/2311.08366) with Harald Oberhauser.
Functions of bounded variation and nonlocal functionals
Abstract
In the past two decades, starting with the pioneering work of Bourgain, Brezis, and Mironescu, there has been widespread interest in characterizing Sobolev and BV (bounded variation) functions by means of non-local functionals. In my recent work I have studied two such functionals: a BMO-type (bounded mean oscillation) functional, and a functional related to the fractional Sobolev seminorms. I will discuss some of my results concerning the limits of these functionals, the concept of Gamma-convergence, and also open problems.
16:00
A friendly introduction to Shimura curves
Abstract
Modular curves play a key role in the Langlands programme, being the simplest example of so-called Shimura varieties. Their less famous cousins, Shimura curves, are also very interesting, and very concrete.
In this talk I will give a gentle introduction to the arithmetic of Shimura curves, with lots of explicit examples. Time permitting, I will say something about recent work about intersection numbers of geodesics on Shimura curves.
15:30
Invariant splittings of HFK of satellite knots
Abstract
Involutive knot Floer homology, a refinement of knot Floer theory, is a powerful knot invariant which was used to solve several long-standing problems, including the one-is-not-enough result for 4-manifolds with boundary. In this talk, we show that if the involutive knot Floer homology of a knot K admits an invariant splitting, then the induced splitting if the knot Floer homology of P(K), for any pattern P, can be made invariant under its \iota_K involution. As an application, we construct an infinite family of examples of pairs of exotic contractible 4-manifolds which survive one stabilization, and observe that some of them are potential candidates for surviving two stabilizations.
15:30
The Critical 2d Stochastic Heat Flow and other critical SPDEs
Abstract
14:15
Stability conditions for line bundles on nodal curves
Abstract
Mathematicians have been interested in the problem of compactifying the Jacobian variety of curves since the mid XIX century. In this talk we will discuss how all 'reasonable' compactified Jacobians of nodal curves can be classified combinatorically. This suffices to obtain a combinatorial classification of all 'reasonable' compactified universal (over the moduli spaces of stable curves) Jacobians. This is a joint work with Orsola Tommasi.
On sketches and corruptions: devising adaptive randomized iterative methods for large linear systems
Abstract
When the data is large, or comes in a streaming way, randomized iterative methods provide an efficient way to solve a variety of problems, including solving linear systems, finding least square solutions, solving feasibility problems, and others. Randomized Kaczmarz algorithm for solving over-determined linear systems is one of the popular choices due to its efficiency and its simple, geometrically intuitive iterative steps.
In challenging cases, for example, when the condition number of the system is bad, or some of the equations contain large corruptions, the geometry can be also helpful to augment the solver in the right way. I will discuss our recent work with Michal Derezinski and Jackie Lok on Kaczmarz-based algorithms that use external knowledge about the linear system to (a) accelerate the convergence of iterative solvers, and (b) enable convergence in the highly corrupted regime.
Mathematrix: Interview Discussion
Abstract
Join us for a discussion about preparing for PhD and PostDoc Interviews. We will be talking to Melanie Rupflin and Mura Yakerson.
11:00
L-open and l-closed C*-algebras
Abstract
This talk concerns some ideas around the question of when a *-homomorphism into a quotient C*-algebra lifts. Lifting of *-homomorphisms arises prominently in the notions of projectivity and semiprojectivity, which in turn are closely related to stability of relations. Blackadar recently defined the notions of l-open and l-closed C*-algebras, making use of the topological space of *-homomorphisms from a C*-algebra A to another C*-algebra B, with the point-norm topology. I will discuss these properties and present new characterizations of them, which lead to solutions of some problems posed by Blackadar. This is joint work with Dolapo Oyetunbi.
09:30
Workshop on Climate Change and Epidemics
To sign up, please register your interest using this sign-up form by Thursday 30th November 2023 at the latest. Places will be confirmed by 5th December 2023. This workshop will take place at St Hilda's College, and is funded by the JUNIPER Consortium and Isaac Newton Institute.
Climate change is the key threat to this and future generations. With the Earth warming faster than ever before, we face inter-linked migration, infrastructure and public health challenges. In 2023, parts of Europe saw their hottest summer on record while other places have experienced unprecedented levels of rainfall and devastating floods.
Many infectious diseases are climate-sensitive. For example, the locations and sizes of mosquito populations are linked to climate, which in turn affects the transmission of mosquito-borne diseases such as dengue and malaria. Therefore, changes in climate are altering the spatial and seasonal patterns of infections over time, putting millions of people at risk. In order to be more resilient to the health challenges posed by climate change, it is critical to understand its impacts on infectious diseases, both in the UK and globally.
The aim of this workshop is to bring together mathematical modellers, epidemiologists, climate scientists and public health specialists to identify key open challenges in our understanding of how climate change affects infectious diseases. The one-day workshop will consist of a series of talks and sessions covering the following themes:
- Changes to infectious disease threats under a changing climate and regions most affected
- Measures and initiatives to mitigate and build resilience in the UK and globally
- Knowledge gaps that need to be filled to limit the impact of climate-sensitive infectious diseases
- Challenges presented by climate-sensitive infectious diseases that provide opportunities to improve public health
The main aim of this event is to catalyse discussion between individuals in the research areas of climate science, infectious disease modelling and public health, fostering collaborations that address key challenges relating to climate-sensitive infectious diseases. Please note: this workshop is in-person only.
Organisers:
Robin Thompson (University of Oxford), Helena Stage (University of Bristol), Alexander Kaye (University of Warwick)
12:00
A Positive Way to Scatter Strings and Particles
Abstract
We present a new formulation of string and particle amplitudes that emerges from simple one-dimensional models. The key is a new way to parametrize the positive part of Teichmüller space. It also builds on the results of Mirzakhani for computing Weil-Petterson volumes. The formulation works at all orders in the perturbation series, including non-planar contributions. The relationship between strings and particles is made manifest as a "tropical limit". The results are well adapted to studying the scattering of large numbers of particles or amplitudes at high loop order. The talk will in part cover results from arXiv:2309.15913, 2311.09284.
18:00
Frontiers in Quantitative Finance: Large Language Models for Quantitative Finance
Abstract
This event is free but requires prior registration. To register, please click here.
Abstract
In the contemporary AI landscape, Large Language Models (LLMs) stand out as game-changers. They redefine not only how we interact with computers via natural language but also how we identify and extract insights from vast, complex datasets. This presentation delves into the nuances of training and customizing LLMs, with a focus on their applications to quantitative finance.
About the speaker
Ioana Boier is a senior principal solutions architect at Nvidia. Her background is in Quantitative Finance and Computer Science. Prior to joining Nvidia, she was the Head of Quantitative Portfolio Solutions at Alphadyne Asset Management, and led research teams at Citadel LLC, BNP Paribas, and IBM T.J. Watson Research. She has a Ph.D. in Computer Science from Purdue University and is the author of over 30 peer-reviewed publications, 15 patents, and the winner of several awards for applied research delivered into products.
View her LinkedIn page
Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
Representation type of cyclotomic quiver Hecke algebras
Abstract
One of the fundamental problems in representation theory is determining the representation type of algebras. In this talk, we will introduce the representation type of cyclotomic quiver Hecke algebras, also known as cyclotomic Khovanov-Lauda-Rouquier algebras, especially in affine type A and affine type C. Our main result relies on novel constructions of the maximal dominant weights of integrable highest weight modules over quantum groups. This talk is based on collaborations with Susumu Ariki, Berta Hudak, and Linliang Song.
16:00
Departmental Colloquium: Ana Caraiani
Abstract
Title: Elliptic curves and modularity
Abstract: The goal of this talk is to give you a glimpse of the Langlands program, a central topic at the intersection of algebraic number theory, algebraic geometry and representation theory. I will focus on a celebrated instance of the Langlands correspondence, namely the modularity of elliptic curves. In the first part of the talk, I will give an explicit example, discuss the different meanings of modularity for rational elliptic curves, and mention applications. In the second part of the talk, I will discuss what is known about the modularity of elliptic curves over more general number fields.
Elliptic curves and modularity
Abstract
The goal of this talk is to give you a glimpse of the Langlands program, a central topic at the intersection of algebraic number theory, algebraic geometry and representation theory. I will focus on a celebrated instance of the Langlands correspondence, namely the modularity of elliptic curves. In the first part of the talk, I will give an explicit example, discuss the different meanings of modularity for rational elliptic curves, and mention applications. In the second part of the talk, I will discuss what is known about the modularity of elliptic curves over more general number fields.
Computing algebraic distances and associated invariants for persistence
Martina Scolamiero is an Assistant Professor in Mathametics with specialization in Geometry and Mathematical Statistics in Artificial Intelligence.
Her research is in Applied and Computational Topology, mainly working on defining topological invariants which are suitable for data analysis, understanding their statistical properties and their applicability in Machine Learning. Martina is also interested in applications of topological methods to Neuroscience and Psychiatry.
Abstract
Pseudo metrics between persistence modules can be defined starting from Noise Systems [1]. Such metrics are used to compare the modules directly or to extract stable vectorisations. While the stability property directly follows from the axioms of Noise Systems, finding algorithms or closed formulas to compute the distances or associated vectorizations is often a difficult problem, especially in the multi-parameter setting. In this seminar I will show how extra properties of Noise Systems can be used to define algorithms. In particular I will describe how to compute stable vectorisations with respect to Wasserstein distances [2]. Lastly I will discuss ongoing work (with D. Lundin and R. Corbet) for the computation of a geometric distance (the Volume Noise distance) and associated invariants on interval modules.
[1] M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam, S. Oberg. Multidimensional Persistence and Noise, (2016) Foundations of Computational Mathematics, Vol 17, Issue 6, pages 1367-1406. doi:10.1007/s10208-016-9323-y.
[2] J. Agerberg, A. Guidolin, I. Ren and M. Scolamiero. Algebraic Wasserstein distances and stable homological invariants of data. (2023) arXiv: 2301.06484.
Sequence models in biomedicine: from predicting disease progression to genome editing outcomes
Abstract
Sequential biomedical data is ubiquitous, from time-resolved data about patient encounters in the clinical realm to DNA sequences in the biological domain. The talk will review our latest work in representation learning from longitudinal data, with a particular focus on finding optimal representations for complex and sparse healthcare data. We show how these representations are useful for comparing patient journeys and finding patients with similar health outcomes. We will also venture into the field of genome engineering, where we build models that work on DNA sequences for predicting editing outcomes for base and prime editors.
A compendium of logarithmic corrections in AdS/CFT
Abstract
I will discuss logarithmic corrections to various CFT partition functions in the context of the AdS4/CFT3 correspondence for theories arising on the worldvolume of M2-branes. I will use four-dimensional gauged supergravity and heat kernel methods and present general expressions for the logarithmic corrections to the gravitational on-shell action or black hole entropy for a number of different supergravity backgrounds. I will outline several subtleties and puzzles in these calculations and contrast them with a similar analysis of logarithmic corrections performed directly in the eleven-dimensional uplift of a given four-dimensional supergravity background. This analysis suggests that four-dimensional supergravity consistent truncations are not the proper setting for studying logarithmic corrections in AdS/CFT. These results have important implications for the existence of scale-separated AdS vacua in string theory and for effective field theory in AdS more generally.
Unramified geometric class field theory
Abstract
Roughly speaking, class field theory for a number field K describes the abelianization of its absolute Galois group in terms of the idele class group of K. Geometric class field theory is what we get when K is instead the function field of a smooth projective geometrically connected curve X over a finite field. In this talk, I give a precise statement of geometric class field theory in the unramified case and describe how one can prove it by showing the Picard stack of X is the “free dualizable commutative group stack on X”. A key part is to show that the usual “divisor class group exact sequence“ can be done in families to give the adelic uniformization of the Picard stack by the moduli space of Cartier divisors on X.
The Zilber-Pink conjecture: a review
Abstract
I will recall the Zilber-Pink conjecture for Shimura varieties and give my perspective on current progress towards a proof.
16:00
Duality of causal distributionally robust optimization
Abstract
In this talk, we investigate distributionally robust optimization (DRO) in a dynamic context. We consider a general penalized DRO problem with a causal transport-type penalization. Such a penalization naturally captures the information flow generated by the models. We derive a tractable dynamic duality formula under a measure theoretic framework. Furthermore, we apply the duality to distributionally robust average value-at-risk and stochastic control problems.
Noncommutative geometry meets harmonic analysis on reductive symmetric spaces
Abstract
A homogeneous space G/H is called a reductive symmetric space if G is a (real) reductive Lie group, and H is a symmetric subgroup of G, meaning that H is the subgroup fixed by some involution on G. The representation theory on reductive symmetric spaces was studied in depth in the 1990s by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, among many others. In particular, they obtained the Plancherel formula for the L^2 space of G/H. An important aspect is that this generalizes the group case, obtained by Harish-Chandra, which corresponds to the case when G = G' x G' and H is the diagonal subgroup.
In our collaborative efforts with A. Afgoustidis, N. Higson, P. Hochs, Y. Song, we are studying this subject from the perspective of noncommutative geometry. I will describe this exciting new development, with a particular emphasis on describing what is new and how this is different from the traditional group case, i.e. the reduced group C*-algebra of G.
16:00
Computing p-adic heights on hyperelliptic curves
Abstract
In this talk, we present an algorithm to compute p-adic heights on hyperelliptic curves with good reduction. Our algorithm improves a previous algorithm of Balakrishnan and Besser by being considerably simpler and faster and allowing even degree models. We discuss two applications of our work: to apply the quadratic Chabauty method for rational and integral points on hyperelliptic curves and to test the p-adic Birch and Swinnerton-Dyer conjecture in examples numerically. This is joint work with Steffen Müller.
15:00
A gentle introduction to Ricci flow
Abstract
Richard Hamilton introduced the Ricci flow as a way to study the Poincaré conjecture, which says that every simply connected, compact three-manifold is homeomorphic to the three-sphere. In this talk, we will introduce the Ricci flow in a way that is accessible to anyone with basic knowledge of Riemannian geometry. We will give some examples, discuss finite time singularities, and give an application to a theorem of Hamilton which says that every compact Riemannian 3-manifold with positive Ricci curvature admits a metric of constant positive sectional curvature.
14:00
Machine Learning in HEP-TH
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
14:00
Multilevel adaptivity for stochastic finite element methods
Abstract
This talk concerns the design and analysis of adaptive FEM-based solution strategies for partial differential equations (PDEs) with uncertain or parameter-dependent inputs. We present two conceptually different strategies: one is projection-based (stochastic Galerkin FEM) and the other is sampling-based (stochastic collocation FEM). These strategies have emerged and become popular as effective alternatives to Monte-Carlo sampling in the context of (forward) uncertainty quantification. Both stochastic Galerkin and stochastic collocation approximations are typically represented as finite (sparse) expansions in terms of a parametric polynomial basis with spatial coefficients residing in finite element spaces. The focus of the talk is on multilevel approaches where different spatial coefficients may reside in different finite element spaces and, therefore, the underlying spatial approximations are allowed to be refined independently from each other.
We start with a more familiar setting of projection-based methods, where exploiting the Galerkin orthogonality property and polynomial approximations in terms of an orthonormal basis facilitates the design and analysis of adaptive algorithms. We discuss a posteriori error estimation as well as the convergence and rate optimality properties of the generated adaptive multilevel Galerkin approximations for PDE problems with affine-parametric coefficients. We then show how these ideas of error estimation and multilevel adaptivity can be applied in a non-Galerkin setting of stochastic collocation FEM, in particular, for PDE problems with non-affine parameterization of random inputs and for problems with parameter-dependent local spatial features.
The talk is based on a series of joint papers with Dirk Praetorius (TU Vienna), Leonardo Rocchi (Birmingham), Michele Ruggeri (University of Strathclyde, Glasgow), David Silvester (Manchester), and Feng Xu (Manchester).
Gravitational Landau Damping
Abstract
In the 1960s, Lynden-Bell, studying the dynamics of galaxies around steady states of the gravitational Vlasov-Poisson equation, described a phenomenon he called "violent relaxation," a convergence to equilibrium through phase mixing analogous in some respects to Landau damping in plasma physics. In this talk, I will discuss recent work on this gravitational Landau damping for the linearised Vlasov-Poisson equation and, in particular, the critical role of regularity of the steady states in distinguishing damping from oscillatory behaviour in the perturbations. This is based on joint work with Mahir Hadzic, Gerhard Rein, and Christopher Straub.
Droplet dynamics in the presence of gas nanofilms: merging, wetting, bouncing & levitation
Abstract
Recent advances in experimental techniques have enabled remarkable discoveries and insight into how the dynamics of thin gas/vapour films can profoundly influence the behaviour of liquid droplets: drops impacting solids can “skate on a film of air” [1], so that they can “bounce off walls” [2,3]; reductions in ambient gas pressure can suppress splashing [4] and initiate the merging of colliding droplets [5]; and evaporating droplets can levitate on their own vapour film [7] (the Leidenfrost effect). Despite these advances, the precise physical mechanisms governing these phenomena remains a topic of debate. A theoretical approach would shed light on these issues, but due to the strongly multiscale nature of these processes brute force computation is infeasible. Furthermore, when films reach the scale of the mean free path in the gas (i.e. ~100nm) and below, new nanoscale physics appears that renders the classical Navier-Stokes paradigm inaccurate.
In this talk, I will overview our development of efficient computational models for the aforementioned droplet dynamics in the presence of gas nanofilms into which gas-kinetic, van der Waals and/or evaporative effects can be easily incorporated [8,9]. It will be shown that these models can reproduce experimental observations – for example, the threshold between bouncing and wetting for drop impact on a solid is reproduced to within 5%, whilst a model excluding either gas-kinetic or van der Waals effects is ~170% off! These models will then be exploited to make new experimentally-verifiable predictions, such as how we expect drops to behave in reduced pressure environments. Finally, I will conclude with some exciting directions for future wor
[1] JM Kolinski et al, Phys. Rev. Lett. 108 (2012), 074503. [2] JM Kolinski et al, EPL. 108 (2014), 24001. [3] J de Ruiter et al, Nature Phys. 11 (2014), 48. [4] L Xu et al, Phys. Rev. Lett. 94 (2005), 184505. [5] J Qian & CK Law, J. Fluid. Mech. 331 (1997), 59. [6] KL Pan J. Appl. Phys. 103 (2008), 064901. [7] D Quéré, Ann. Rev. Fluid Mech. 45 (2013), 197. [8] JE Sprittles, Phys. Rev. Lett. 118 (2017), 114502. [9] MV Chubynsky et al, Phys. Rev. Lett.. 124 (2020), 084501.
Homotopy type of categories of models
Abstract
For a complete theory T, Lascar associated with it a Galois group which we call the Lacsar group. We will talk about some of my work on recovering the Lascar group as the fundamental group of Mod(T) and some recent progress in understanding the higher homotopy groups.
Combinatorial Hierarchical Hyperbolicity of the Mapping Class Group
Abstract
The mapping class group of a surface has a hierarchical structure in which the geometry of the group can be seen by examining its action on the curve graph of every subsurface. This behavior was one of the motivating examples for a generalization of hyperbolicity called hierarchical hyperbolicity. Hierarchical hyperbolicity has many desirable consequences, but the definition is long, and proving that a group satisfies it is generally difficult. This difficulty motivated the introduction of a new condition called combinatorial hierarchical hyperbolicity by Behrstock, Hagen, Martin, and Sisto in 2020 which implies the original and is more straightforward to check. In recent work, Hagen, Mangioni, and Sisto developed a method for building a combinatorial hierarchically hyperbolic structure from a (sufficiently nice) hierarchically hyperbolic one. The goal of this talk is to describe their construction in the case of the mapping class group and illustrate some of the parallels between the combinatorial structure and the original.
Euclidean Ramsey Theory
Abstract
Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.
Random tree encodings and snakes
Abstract
There are several functional encodings of random trees which are commonly used to prove (among other things) scaling limit results. We consider two of these, the height process and Lukasiewicz path, in the classical setting of a branching process tree with critical offspring distribution of finite variance, conditioned to have n vertices. These processes converge jointly in distribution after rescaling by n^{-1/2} to constant multiples of the same standard Brownian excursion, as n goes to infinity. Their difference (taken with the appropriate constants), however, is a nice example of a discrete snake whose displacements are deterministic given the vertex degrees; to quote Marckert, it may be thought of as a “measure of internal complexity of the tree”. We prove that this discrete snake converges on rescaling by n^{-1/4} to the Brownian snake driven by a Brownian excursion. We believe that our methods should also extend to prove convergence of a broad family of other “globally centred” discrete snakes which seem not to be susceptible to the methods of proof employed in earlier works of Marckert and Janson.
This is joint work in progress with Louigi Addario-Berry, Serte Donderwinkel and Rivka Mitchell.
15:00
Fixed points of group homomorphisms and the Post Correspondence Problem
Abstract
The Post Correspondence Problem (PCP) is a classical problem in computer science that can be stated as: is it decidable whether given two morphisms g and h between two free semigroups $A$ and $B$, there is any nontrivial $x$ in $A$ such that $g(x)=h(x)$? This question can be phrased in terms of equalisers, asked in the context of free groups, and expanded: if the `equaliser' of $g$ and $h$ is defined to be the subgroup consisting of all $x$ where $g(x)=h(x)$, it is natural to wonder not only whether the equaliser is trivial, but what its rank or basis might be.
While the PCP for semigroups is famously insoluble and acts as a source of undecidability in many areas of computer science, the PCP for free groups is open, as are the related questions about rank, basis, or further generalisations. In this talk I will give an overview of what is known about the PCP in hyperbolic groups, nilpotent groups and beyond (joint work with Alex Levine and Alan Logan).