Thu, 23 Nov 2023
16:00
L5

Anticyclotomic p-adic L-functions for U(n) x U(n+1)  

Xenia Dimitrakopoulou
(University of Warwick)
Abstract

I will report on current work in progress on the construction of anticyclotomic p-adic L-functions for Rankin--Selberg products. I will explain how by p-adically interpolating the branching law for the spherical pair (U(n)xU(n+1), U(n)) we can construct a p-adic L-function attached to cohomological automorphic representations of U(n) x U(n+1), including anticyclotomic variation. Due to the recent proof of the unitary Gan--Gross--Prasad conjecture, this p-adic L-function interpolates the square root of the central L-value. Time allowing, I will explain how we can extend this result to the Coleman family of an automorphic representation.

Thu, 23 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Mean-field Analysis of Generalization Errors

Dr Gholamali Aminian
(Alan Turing Institute)
Abstract

We propose a novel framework for exploring weak and $L_2$ generalization errors of algorithms through the lens of differential calculus on the space of probability measures. Specifically, we consider the KL-regularized empirical risk minimization problem and establish generic conditions under which the generalization error convergence rate, when training on a sample of size $n$ , is $\matcal{O}(1/n)$. In the context of supervised learning with a one-hidden layer neural network in the mean-field regime, these conditions are reflected in suitable integrability and regularity assumptions on the loss and activation functions.

Thu, 23 Nov 2023
14:00
N3.12

Von Neumann Algebras and their Type Classification

Clément Virally
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 23 Nov 2023
14:00
Lecture Room 3

Making SGD parameter-free

Oliver Hinder
(University of Pittsburgh)
Abstract

We develop an algorithm for parameter-free stochastic convex optimization (SCO) whose rate of convergence is only a double-logarithmic factor larger than the optimal rate for the corresponding known-parameter setting. In contrast, the best previously known rates for parameter-free SCO are based on online parameter-free regret bounds, which contain unavoidable excess logarithmic terms compared to their known-parameter counterparts. Our algorithm is conceptually simple, has high-probability guarantees, and is also partially adaptive to unknown gradient norms, smoothness, and strong convexity. At the heart of our results is a novel parameter-free certificate for the step size of stochastic gradient descent (SGD), and a time-uniform concentration result that assumes no a-priori bounds on SGD iterates.

Additionally, we present theoretical and numerical results for a dynamic step size schedule for SGD based on a variant of this idea. On a broad range of vision and language transfer learning tasks our methods performance is close to that of SGD with tuned learning rate. Also, a per-layer variant of our algorithm approaches the performance of tuned ADAM.

This talk is based on papers with Yair Carmon and Maor Ivgi.

Thu, 23 Nov 2023

12:00 - 13:00
L3

Recent developments in fully nonlinear degenerate free boundary problems

Edgard Pimentel
(University of Coimbra)
Abstract

We consider degenerate fully nonlinear equations, whose degeneracy rate depends on the gradient of solutions. We work under a Dini-continuity condition on the degeneracy term and prove that solutions are continuously differentiable. Then we frame this class of equations in the context of a free transmission problem. Here, we discuss the existence of solutions and establish a result on interior regularity. We conclude the talk by discussing a boundary regularity estimate; of particular interest is the case of point-wise regularity at the intersection of the fixed and the free boundaries. This is based on joint work with David Stolnicki.

Thu, 23 Nov 2023

12:00 - 13:00
L1

Financial Health in Banking - combining automation and optimisation techniques in a multi-problem setup

Kal BUKOVSKI
(Sopra Steria)
Abstract

Predictive scoring modelling is a common approach to measure financial health and credit worthiness in banking. Whilst the latter is a key factor in making decisions for lending, evaluating financial health helps to identify vulnerable customers trending towards financial hardship, who need support. The current macroeconomic uncertainties amplify the importance of extensive flexibility in modelling data solutions so that they can remain effective and adaptive to a volatile economic environment. This workshop is focused on discussing relevant techniques and mathematical methodologies which can help modernise traditional scoring models and accelerate innovation. In summary, the problem definition in the banking context is how automation and optimality can be achieved in a multiobjective problem where a subset of existing data features should be selected by relevance and uniqueness, assigned scoring weights by importance and how a pool of customers can be categorised accordingly using their individual scores and auto-adjusting thresholds of risk classification scales. The key challenge is imposed by the mutual dependency of the three sub-problems and their objectives. Introducing or removing constraints in any of them can change the feasibility and optimality of the others and the overall solution. It is common for traditional scoring models to be mainly focused on the predictive accuracy and their setup is often defined and revised manually, following ad-hoc exploratory data analysis and business-led decision making. An automated optimisation of the data features’ selection, scoring weights and classification thresholds definition can achieve respectively: ▪ Precise financial health evaluation and book classification under changing economic climate; ▪ Development of innovative data-driven solutions to enhance prevention from financial hardship and bankruptcies.

Wed, 22 Nov 2023

17:15 - 18:30
Magrath Room, Queen's

Mathematising certainty in the 18th century. Jacob Bernoulli’s and Thomas Bayes’ redefinition of “absolute” and “moral” certainty through probability calculus

Dinh-Vinh Colomban
(Université Paris Nanterre)
Abstract

In the 17th century, certainty was still largely organized around heterogeneous categories such as “absolute certainty” and “moral certainty”. “Absolute certainty” was the highest kind of certainty rather than degree and it was limited to metaphysical and mathematical demonstrations. On the other hand, “moral certainty” was a high degree of assent which, even though it was subjective and always fallible, was regarded as sufficient for practical decisions based on empirical evidence. Although this duality between “moral” and “absolute” certainty remained in use well into the 18th century, its meaning shifted with the emergence of the calculus of probabilities. Probability calculus provided tools for attempts to mathematise “moral certainty” which would have been a contradiction in terms in their classical 17th-century sense.

Jacob Bernoulli's Ars Conjectandi (1713) followed by Thomas Bayes and Richard Price's An Essay towards solving a Problem in the Doctrine of Chances (1763) reshuffled what was before mutually exclusive characteristics of those categories of certainty. Moral certainty became mathematizable and measurable, while absolute certainty would sit in continuity in degree with moral certainty rather than be different in kind. The concept of certainty as a whole is thus redefined as a quantitative continuum.

This transformation lays the conceptual foundations for a new approach to knowledge. Knowledge and even scientific knowledge are no longer defined by a binary model of an absolute exclusion of uncertainty, but rather by the accuracy of measurement of the irreducible uncertainty in all empirical-based knowledge. Such measurement becomes possible thanks to the new tools provided by the emergence of probability calculus.

Wed, 22 Nov 2023

16:00 - 17:00
L6

3-manifold algorithms, representation theory, and the generalised Riemann hypothesis

Adele Jackson
(University of Oxford)
Abstract

You may be surprised to see the generalised Riemann hypothesis appear in algorithmic topology. For example, knottedness was originally shown to be in NP under the assumption of GRH.
Where does this condition come from? We will discuss this in the context of 3-sphere recognition, and examine why the approach fails for higher dimensions.

Tue, 21 Nov 2023

17:00 - 18:00
L1

THE 16th BROOKE BENJAMIN LECTURE: Advances in Advancing Interfaces: The Mathematics of Manufacturing of Industrial Foams, Fluidic Devices, and Automobile Painting

James Sethian
(UC Berkeley)
Abstract

Complex dynamics underlying industrial manufacturing depend in part on multiphase multiphysics, in which fluids and materials interact across orders of magnitude variations in time and space. In this talk, we will discuss the development and application of a host of numerical methods for these problems, including Level Set Methods, Voronoi Implicit Interface Methods, implicit adaptive representations, and multiphase discontinuous Galerkin Methods.  Applications for industrial problems will include modeling how foams evolve, how electro-fluid jetting devices work, and the physics and dynamics of rotary bell spray painting across the automotive industry.

Tue, 21 Nov 2023

17:00 - 18:00
L1

Advances in Advancing Interfaces: The Mathematics of Manufacturing of Industrial Foams, Fluidic Devices, and Automobile Painting

James Sethian
(University of California, Berkeley)
Abstract

Complex dynamics underlying industrial manufacturing depend in part on
multiphase multiphysics, in which fluids and materials interact across
orders of magnitude variations in time and space. In this talk, we will
discuss the development and application of a host of numerical methods for
these problems, including Level Set Methods, Voronoi Implicit Interface
Methods, implicit adaptive representations, and multiphase discontinuous
Galerkin Methods.  Applications for industrial problems will include modeling
how foams evolve, how electro-fluid jetting devices work, and
the physics and dynamics of rotary bell spray painting across the automotive
industry.

 

Tue, 21 Nov 2023

16:00 - 17:00
L6

Beyond i.i.d. weights: sparse and low-rank deep Neural Networks are also Gaussian Processes

Thiziri Nait Saada
(Mathematical Institute (University of Oxford))
Abstract

The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that enables a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews (2018) to a larger class of initial weight distributions (which we call "pseudo i.i.d."), including the established cases of i.i.d. and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with pseudo i.i.d. distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 21 Nov 2023
15:00
L1

Residual finiteness and actions on trees

Gareth Wilkes
Abstract

One of the more common ways to study a residually finite group (or its profinite completion) is via breaking it down into a graph of groups in some way. The descriptions of this theory generally found in the literature are highly algebraic and difficult to digest. I will present alternative, more geometric, definitions and perspectives on these theories based on properties of virtually free groups and their profinite completions.

Tue, 21 Nov 2023

14:00 - 15:00
L3

Embedding planar graphs on point-sets: Problems and new results

Raphael Steiner
(ETH Zurich)
Abstract

In this talk, I will present new results addressing two rather well-known problems on the embeddability of planar graphs on point-sets in the plane. The first problem, often attributed to Mohar, asks for the asymptotics of the minimum size of so-called universal point sets, i.e. point sets that simultaneously allow straight-line embeddings of all planar graphs on $n$ vertices. In the first half of the talk I will present a family of point sets of size $O(n)$ that allow straight-line embeddings of a large family of $n$-vertex planar graphs, including all bipartite planar graphs. In the second half of the talk, I will present a family of $(3+o(1))\log_2(n)$ planar graphs on $n$ vertices that cannot be simultaneously embedded straight-line on a common set of $n$ points in the plane. This significantly strengthens the previously best known exponential bound.

Tue, 21 Nov 2023

14:00 - 15:00
L5

Proximal Galekin: A Structure-Preserving Finite Element Method For Pointwise Bound Constraints

Brendan Keith
(Brown University)
Abstract

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinitedimensional function spaces. In this talk, we will introduce the proximal Galerkin method and apply it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The proximal Galerkin framework is a natural consequence of the latent variable proximal point (LVPP) method, which is an stable and robust alternative to the interior point method that will also be introduced in this talk.

In particular, LVPP is a low-iteration complexity, infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout the talk, we will arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and an infinite-dimensional Lie group; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization.

The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis. This talk is based on [1].

 

Keywords: pointwise bound constraints, bound-preserving discretization, entropy regularization, proximal point

 

Mathematics Subject Classifications (2010): 49M37, 65K15, 65N30

 

References  [1] B. Keith, T.M. Surowiec. Proximal Galerkin: A structure-preserving finite element method for pointwise bound constraints arXiv preprint arXiv:2307.12444 2023.

Brown University Email address: @email

Simula Research Laboratory Email address: @email

Tue, 21 Nov 2023
13:00
L1

KLT for windings strings and nonrelativistic string theory

Matthew Yu
(Oxford )
Abstract

I will discuss a KLT relation of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The goal is to introduce an interesting D-brane set up in the target space in order to accommodate both quantum numbers of the closed string. I will then discuss KLT factorization of amplitudes for winding closed strings in the presence of a critical Kalb-Ramond field and the relevance of this work for nonrelativistic string theory when taking the zero Regge limit. 

Tue, 21 Nov 2023
11:00
L1

Singularity Detection from a Data "Manifold"

Uzu Lim
(Mathematical Institute)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

High-dimensional data is often assumed to be distributed near a smooth manifold. But should we really believe that? In this talk I will introduce HADES, an algorithm that quickly detects singularities where the data distribution fails to be a manifold.

By using hypothesis testing, rather than persistent homology, HADES achieves great speed and a strong statistical foundation. We also have a precise mathematical theorem for correctness, proven using optimal transport theory and differential geometry. In computational experiments, HADES recovers singularities in synthetic data, road networks, molecular conformation space, and images.

Paper link: https://arxiv.org/abs/2311.04171
Github link: https://github.com/uzulim/hades
 

Tue, 21 Nov 2023
11:00
Lecture Room 4

Periodic space-time homogenization of the ϕ 4/2 -equation

Harprit Singh
(Imperial College, London)
Abstract

We consider the homogenisation problem for the ϕ4/2 equation on the torus T2 , i.e. the behaviour as ϵ → 0 of the solutions to the equations suggestively written

tuϵ − ∇ · A(x/ϵ, t/ϵ2 )∇uϵ = −u3ϵ + ξ

where ξ denotes space-time white noise and A : T 2 × R is uniformly elliptic, periodic and H¨older continuous. Based on joint work with M. Hairer

Mon, 20 Nov 2023
16:30
L3

Recent developments on evolution PDEs on graphs

Antonio Esposito
(Mathematical Institute (University of Oxford))
Abstract

The seminar concerns the study of evolution equations on graphs, motivated by applications in data science and opinion dynamics. We will discuss graph analogues of the continuum nonlocal-interaction equation and interpret them as gradient flows with respect to a graph Wasserstein distance, using Benamou--Brenier formulation. The underlying geometry of the problem leads to a Finslerian gradient flow structure, rather than Riemannian, since the resulting distance on graphs is actually a quasi-metric. We will address the existence of suitably defined solutions, as well as their asymptotic behaviour when the number of vertices converges to infinity and the graph structure localises. The two limits lead to different dynamics. From a slightly different perspective, by means of a classical fixed-point argument, we can show the existence and uniqueness of solutions to a larger class of nonlocal continuity equations on graphs. In this context, we consider general interpolation functions of the mass on the edges, which give rise to a variety of different dynamics. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen. The latter study can be extended to equations on co-evolving graphs. The talk is based on works in collaboration with G. Heinze (Augsburg), L. Mikolas (Oxford), F. S. Patacchini (IFP Energies Nouvelles), A. Schlichting (University of Münster), and D. Slepcev (Carnegie Mellon University). 

Mon, 20 Nov 2023
16:00
L1

Post-Quantum Cryptography (and why I’m in the NT corridor)

Patrick Hough
(University of Oxford)
Abstract

In this talk I will give a brief introduction to the field of post-quantum (PQ) cryptography, introducing a few of the most popular computational hardness assumptions. Second, I will give an overview of a recent work of mine on PQ electronic voting. I’ll finish by presenting a short selection of ‘exotic’ cryptographic constructions that I think are particularly hot at the moment (no, not blockchain). The talk will be definitionally light since I expect the area will be quite new to many and I hope this will make for a more engaging introduction.

Mon, 20 Nov 2023
15:45
L5

OXPDE-WCMB seminar: From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.

Mariya Ptashnyk
(Heriot-Watt University, Edinburgh)
Abstract

First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities.  Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles. 

Mon, 20 Nov 2023
15:30
L4

Quantum field theory of Lorentzian manifolds

Alexander Schenkel
(University of Nottingham)
Abstract

In this talk I will provide an overview of our current research at the interface of quantum field theory (QFT), Lorentzian geometry and higher categorical structures. I will present operads which encode the rich algebraic structure of QFTs on Lorentzian manifolds and show that in low dimensions their algebras relate to familiar algebraic structures. Our operads share certain similarities with the little disk operads from topology, in particular they involve a homotopical localization at geometric embeddings related to ‘time evolution’. I will show that, in contrast to the topological context, this homotopical localization can be strictified in many important classes of examples, which is loosely speaking due to the 1-dimensional nature of time evolution in Lorentzian geometry. I will conclude by explaining how simple examples of such Lorentzian QFTs can be constructed from a homotopical generalization of the concept of Green’s operators for hyperbolic partial differential equations, which we call Green hyperbolic complexes. Throughout this talk, I will frequently comment on the similarities and differences between our approach, factorization algebras and functorial field theories.

Mon, 20 Nov 2023
15:30
Lecture Theatre 3, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

SPDEs driven by standard symmetric α-stable cylindrical processes

Professor Markus Riedle
(Kings’ College London)
Abstract

Standard symmetric α-stable cylindrical processes in Hilbert spaces are the natural generalisation of the analogue processes in Euclidean spaces. However, like standard Brownian motions, standard symmetric α-stable processes in finite dimensions can only be generalised to infinite dimensional Hilbert spaces as cylindrical processes, i.e. processes in a generalised sense (of Gelfand and Vilenkin (1964) or Segal (1954))  not attaining values in the underlying Hilbert space.

In this talk, we briefly introduce the theory of stochastic integrals with respect to standard symmetric α-stable cylindrical processes. As these processes exist only in the generalised sense, introducing a stochastic integral requires an approach different to the classical one by semi-martingale decomposition. The main result presented in this talk is the existence of a solution to an abstract evolution equation driven by a standard symmetric α-stable cylindrical process. The main tool for establishing this result is a Yosida approximation and an Itô formula for Hilbert space-valued semi-martingales where the martingale part is represented as an integral driven by cylindrical α-stable noise. While these tools are standard in stochastic analysis, due to the cylindrical nature of our noise, their application requires completely novel arguments and techniques.

Mon, 20 Nov 2023

15:00 - 16:00
L6

t-structures on the equivariant derived category of the Steinberg scheme.

Ivan Losev
(Yale University)
Abstract

The Steinberg scheme and the equivariant coherent sheaves on it play a very important role in Geometric Representation theory. In this talk we will discuss various t-structures on the equivariant derived category of the Steinberg of importance for Representation theory in positive characteristics. Based on arXiv:2302.05782.

Mon, 20 Nov 2023
14:15
L4

A theory of type B/C/D enumerative invariants

Chenjing Bu
(Oxford)
Abstract

We propose a theory of enumerative invariants for structure groups of type B/C/D, that is, for the orthogonal and symplectic groups. For example, we count orthogonal or symplectic principal bundles on projective varieties, and there is also a quiver analogue called self-dual quiver representations. We discuss two different flavours of these invariants, namely, motivic invariants and homological invariants, the former of which can be used to define Donaldson–Thomas invariants in type B/C/D. We also discuss algebraic structures arising from the relevant moduli spaces, including Hall algebras, Joyce's vertex algebras, and modules for these algebras, which are used to write down wall-crossing formulae for our invariants.

Mon, 20 Nov 2023

14:00 - 15:00
Lecture Room 6

Meta Optimization

Prof. Elad Hazan
(Princeton University and Google DeepMind)
Abstract

How can we find and apply the best optimization algorithm for a given problem?   This question is as old as mathematical optimization itself, and is notoriously hard: even special cases such as finding the optimal learning rate for gradient descent is nonconvex in general. 

In this talk we will discuss a dynamical systems approach to this question. We start by discussing an emerging paradigm in differentiable reinforcement learning called “online nonstochastic control”. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. We then show how this methodology can yield global guarantees for learning the best algorithm in certain cases of stochastic and online optimization. 

No background is required for this talk, but relevant material can be found in this new text on online control and paper on meta optimization.

 

Prof. Elad's Bio

Fri, 17 Nov 2023
17:30
Zoom

Twistor Particle Programme Rebooted: A "zig-z̄ag" Theory of Massive Spinning Particles

Joonhwi Kim
(Caltech)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

Recently, the Newman-Janis shift has been revisited from the angle of scattering amplitudes in terms of the so-called "massive spinor-helicity variables," tracing back to Penrose and Perjés in the 70s. However, well-established results are limited in the same-helicity (self-dual) sector, while a puzzle of spurious poles arises in mixed-helicity sectors. This talk will outline how massive twistor theory can reproduce the same-helicity results while offering a possible solution to the spurious pole puzzle. Firstly, the Newman-Janis shift in the same-helicity sector is derived from a complexified version of the equivalence principle. Secondly, the massive twistor particle is coupled to background fields from bottom-up and top-down perspectives. The former is based on perturbations of symplectic structures in massive twistor space. The latter provides a generalization of Newman-Janis shift in generic backgrounds, which also leads to "curved massive twistor space" and its deformed massive incidence relation. Lastly, the Feynman rules of the first-quantized massive twistor particle and their physical interpretation are briefly discussed. Overall, a significant emphasis is put on the Kähler geometry ("zig-z̄ag structure") of massive twistor space, which eventually connects to a worldsheet structure of the Kerr solution.

 

Fri, 17 Nov 2023
16:00
L1

Careers outside academia

V-Nova and Dr Anne Wolfes (Careers Service)
Abstract

What opportunities are available outside of academia? What skills beyond strong academic background are companies looking for to be successful in transitioning to industry? Come along and hear from video technology company V-Nova and Dr Anne Wolfes from the Careers Service to get some invaluable advice on careers outside academia.

Logo

Fri, 17 Nov 2023

14:00 - 15:00
L2

Self-similar solutions to two-dimensional Riemann problems involving transonic shocks

Mikhail Feldman
(University of Wisconsin)
Abstract

In this talk, we discuss two-dimensional Riemann problems in the framework of potential flow
equation and isentropic Euler system. We first review recent results on the existence, regularity and properties of
global self-similar solutions involving transonic shocks for several 2D Riemann problems in the
framework of potential flow equation. Examples include regular shock reflection, Prandtl reflection, and four-shocks
Riemann problem. The approach is to reduce the problem to a free boundary problem for a nonlinear elliptic equation
in self-similar coordinates. A well-known open problem is to extend these results to a compressible Euler system,
i.e. to understand the effects of vorticity. We show that for the isentropic Euler system, solutions have
low regularity, specifically velocity and density do not belong to the Sobolev space $H^1$ in self-similar coordinates.  
We further discuss the well-posedness of the transport equation for vorticity in the resulting low regularity setting.

------------------------

Fri, 17 Nov 2023

14:00 - 15:00
Virtual

The generalist medical AI will see you now

Professor Pranav Rajpurkar
(Department of Biomedical Informatics Harvard Medical School Boston)
Abstract

Accurate interpretation of medical images is crucial for disease diagnosis and treatment, and AI has the potential to minimize errors, reduce delays, and improve accessibility. The focal point of this presentation lies in a grand ambition: the development of 'Generalist Medical AI' systems that can closely resemble doctors in their ability to reason through a wide range of medical tasks, incorporate multiple data modalities, and communicate in natural language. Starting with pioneering algorithms that have already demonstrated their potential in diagnosing diseases from chest X-rays or electrocardiograms, matching the proficiency of expert radiologists and cardiologists, I will delve into the core challenges and advancements in the field. The discussion will navigate towards the topic of label-efficient AI models: with a scarcity of meticulously annotated data in healthcare, the development of AI systems capable of learning effectively from limited labels has become a key concern. In this vein, I'll delve into how the innovative use of self-supervision and pre-training methods has led to algorithmic advancements that can perform high-level diagnostic tasks using significantly less annotated data. Additionally, I will talk about initiatives in data curation, human-AI collaboration, and the creation of open benchmarks to evaluate the generalizability of medical AI algorithms. In sum, this talk aims to deliver a comprehensive picture of the state of 'Generalist Medical AI,' the advancements made, the challenges faced, and the prospects lying ahead.

Fri, 17 Nov 2023

12:00 - 13:15
L3

BV formalism in perturbative algebraic quantum field theory

Kasia Rejzner
(York University)
Abstract

In this talk I will review how the BV formalism is used in quantizing theories with local gauge symmetries within the framework of perturbative algebraic quantum field theory. The latter is a mathematically rigorous approach to QFT that combines the locality idea going back to Haag and Kastler with Epstein-Glaser renormalization. In my talk I will also show how these methods can also lead to the construction of a factorization algebra.

Fri, 17 Nov 2023

12:00 - 13:00

The spherical Hecke algebra of GL(n,F)

Maximilien Mackie
(University of Oxford)
Abstract

The Hecke algebra is an algebraic gadget for studying the smooth complex representations of locally profinite groups. We demonstrate the spherical Hecke algebra of GL(n,F) is commutative and present a combinatorial proof of the Satake isomorphism. We apply this to the classification of spherical representations of GL(2,F).

Thu, 16 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Automated Market Makers Designs beyond Constant Functions

Dr Leandro Sanchez-Betancourt
(Mathematical Insitute, Oxford)
Abstract

Popular automated market makers (AMMs) use constant function markets (CFMs) to clear the demand and supply in the pool of liquidity. A key drawback in the implementation of CFMs is that liquidity providers (LPs) are currently providing liquidity at a loss, on average. In this paper, we propose two new designs for decentralised trading venues, the arithmetic liquidity pool (ALP) and the geometric liquidity pool (GLP). In both pools, LPs choose impact functions that determine how liquidity taking orders impact the marginal exchange rate of the pool, and set the price of liquidity in the form of quotes around the marginal rate. The impact functions and the quotes determine the dynamics of the marginal rate and the price of liquidity. We show that CFMs are a subset of ALP; specifically, given a trading function of a CFM, there are impact functions and  quotes in the ALP that replicate the marginal rate dynamics and the execution costs in the CFM. For the ALP and GLP, we propose an optimal liquidity provision strategy where the price of liquidity maximises the LP's expected profit and the strategy depends on the LP's (i) tolerance to inventory risk and (ii) views on the demand for liquidity. Our strategies admit closed-form solutions and are computationally efficient.  We show that the price of liquidity in CFMs is suboptimal in the ALP. Also, we give conditions on the impact functions and the liquidity provision strategy to prevent arbitrages from rountrip trades. Finally, we use transaction data from Binance and Uniswap v3 to show that liquidity provision is not a loss-leading activity in the ALP.

Thu, 16 Nov 2023
16:00
L5

90 years of pointwise ergodic theory

Ben Krause
(University of Bristol)
Abstract

This talk will cover the greatest hits of pointwise ergodic theory, beginning with Birkhoff's theorem, then Bourgain's work, and finishing with more modern directions.

Thu, 16 Nov 2023
15:00
L4

Compactness problems in new gauge theories

Alfred Holmes
(University of Oxford)
Abstract

Two areas of current research in Mathematical Gauge Theory are the study of higher dimensional instantons on manifolds with special holonomy (for example, Calabi-Yau three folds, Gand Spin(7) manifolds), and low dimensional gauge theories (for example the Kapustin-Witten, Haydys-Witten and ADHM Seiberg-Witten equations). A common feature of these two sets of theories is that the moduli spaces of solutions are in general not compact. In both cases, compactness issues arise because of solutions to a certain non-linear equation called the Fueter equation. In this talk, I'll explain how this non compactness gives a relationship between these high and low dimensional gauge theories.

Thu, 16 Nov 2023
14:00
N3.12

AGT Correspondence and Class S: Part 2

Palash Singh
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 16 Nov 2023

14:00 - 15:00
Lecture Room 3

Finite element schemes and mesh smoothing for geometric evolution problems

Bjorn Stinner
(University of Warwick)
Abstract

Geometric evolutions can arise as simple models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact of any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimisers in the long run.

Thu, 16 Nov 2023

12:00 - 13:00
L1

Elastocapillary windlass in one and two dimensions

Sébastien Neukirch
(Sorbonne Jean Le Rond d’Alembert Lab)
Abstract

Capillary forces acting at the surface of a liquid drop can be strong enough to deform small objects and recent studies have provided several examples of elastic instabilities induced by surface tension. Inspired by the windlass mechanism in spider webs, we present a system where a liquid drop sits on a straight fiber and attracts the fiber which thereby coils inside the drop. We then introduce a 2D extension of the mechanism and build a membrane that can extend/contract by a factor of 20.

Thu, 16 Nov 2023

11:00 - 12:00
C6

On a proposed axiomatisation of the maximal abelian extension of the p-adic numbers

Leo Gitin
(University of Oxford)
Abstract

The local Kronecker-Weber theorem states that the maximal abelian extension of p-adic numbers Qp is obtained from this field by adjoining all roots of unity. In 2018, Koenigsmann conjectured that the maximal abelian extension of Qp is decidable. In my talk, we will discuss Koenigsmann's proposed axiomatisation. In contrast, the maximal unramified extension of Qp is known to be decidable, admitting a complete axiomatisation by an informed but simple set of axioms (this is due to Kochen). We explain how the question of completeness can be reduced to an Ax-Kochen-Ershov result in residue characteristic 0 by the method of coarsening.

Wed, 15 Nov 2023

16:00 - 17:00
L6

Fáry-Milnor type theorems

Shaked Bader
(University of Oxford)
Abstract
In 1947 Karol Borsuk conjectured that if an ant is walking on a circle embedded piecewise linearly in 3 and is not dizzy (did not wind around itself twice) then the circle bounds a disc. He actually phrased it as follows: the total curvature of a knotted knot must be at least 4π
One may ask the same question with other spaces instead of 3.
We will present Milnor's proof of the classical conjecture, then define CAT(0) spaces and present some ideas from Stadler's proof in that setting and a more elementary proof in the setting of CAT(0) polygonal complexes.
 
Tue, 14 Nov 2023

16:00 - 17:00
C2

Admissible KMS bundles on classifiable C$^*$-algebras

Robert Neagu
Abstract

Named after mathematical physicists Kubo, Martin, and Schwinger, KMS states are a special class of states on any C$^*$-algebra admitting a continuous action of the real numbers. Unlike in the case of von Neumann algebras, where each modular flow has a unique KMS state, the collection of KMS states for a given flow on a C$^*$-algebra can be quite intricate. In this talk, I will explain what abstract properties these simplices have and show how one can realise such a simplex on various classes of simple C$^*$-algebras.

Tue, 14 Nov 2023

16:00 - 17:00
L6

Percolation phase transition for the vacant set of random walk

Pierre-François Rodriguez
(Imperial College London)
Abstract

The vacant set of the random walk on the torus undergoes a percolation phase transition at Poissonian timescales in dimensions 3 and higher. The talk will review this phenomenon and discuss recent progress regarding the nature of the transition, both for this model and its infinite-volume limit, the vacant set of random interlacements, introduced by Sznitman in Ann. Math., 171 (2010), 2039–2087. The discussion will lead up to recent progress regarding the long purported equality of several critical parameters naturally associated to the transition. 

 

Tue, 14 Nov 2023

15:30 - 16:30
Online

Preferential attachment trees built from random walks

Gábor Pete
(Rényi Institute/Budapest University of Technology and Economics)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will talk about two separate projects where random walks are building a random tree, yielding preferential attachment behaviour from completely local mechanisms.
First, the Tree Builder Random Walk is a randomly growing tree, built by a walker as she is walking around the tree. At each time $n$, she adds a leaf to her current vertex with probability $n^{-\gamma}, \gamma\in(2/3, 1]$, then moves to a uniform random neighbor on the possibly modified tree. We show that the tree process at its growth times, after a random finite number of steps, can be coupled to be identical to the Barabási-Albert preferential attachment tree model. This coupling implies that many properties known for the BA-model, such as diameter and degree distribution, can be directly transferred to our model. Joint work with János Engländer, Giulio Iacobelli, and Rodrigo Ribeiro. Second, we introduce a network-of-networks model for physical networks: we randomly grow subgraphs of an ambient graph (say, a box of $\mathbb{Z}^d$) until they hit each other, building a tree from how these spatially extended nodes touch each other. We compute non-rigorously the degree distribution exponent of this tree in large generality, and provide a rigorous analysis when the nodes are loop-erased random walks in dimension $d=2$ or $d\geq 5$, using a connection with the Uniform Spanning Tree. Joint work with Ádám Timár, Sigurdur Örn Stefánsson, Ivan Bonamassa, and Márton Pósfai. (See https://arxiv.org/abs/2306.01583)

Tue, 14 Nov 2023
15:00
L1

Classifiability of crossed products by nonamenable groups

Julian Kranz
Abstract

The celebrated Kirchberg-Phillips classification theorem classifies so-called Kirchberg algebras by K-theory. Many examples of Kirchberg algebras can be constructed via the crossed product construction starting from a group action on a compact space. One might ask: When exactly does the crossed product construction produce a Kirchberg algebra? In joint work with Gardella, Geffen, and Naryshkin, we obtained a dynamical answer to this question for a large class of nonamenable groups which we call "groups with paradoxical towers". Our class includes many non-positively curved groups such as acylindrically hyperbolic groups and lattices in Lie groups. I will try to advertise our notion of paradoxical towers, outline how we use it, and pose some open questions.

Tue, 14 Nov 2023

14:00 - 15:00
Online

Skipless chain decompositions and improved poset saturation bounds

Paul Bastide
(LaBRI/Utrecht)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We show that given $m$ disjoint chains in the Boolean lattice, we can create $m$ disjoint skipless chains that cover the same elements (where we call a chain skipless if any two consecutive elements differ in size by exactly one). By using this result we are able to answer two conjectures about the asymptotics of induced saturation numbers for the antichain, which are defined as follows. For positive integers $k$ and $n$, a family $\mathcal{F}$ of subsets of $\{1,\dots,n\}$ is $k$-antichain saturated if it does not contain an antichain of size $k$ (as induced subposet), but adding any set to $\mathcal{F}$ creates an antichain of size $k$. We use $\textrm{sat}^{\ast}(n,k)$ to denote the smallest size of such a family. With more work we pinpoint the exact value of $\textrm{sat}^{\ast}(n,k)$, for all $k$ and sufficiently large $n$. Previously, exact values for $\textrm{sat}^{\ast}(n,k)$ were only known for $k$ up to 6. We also show that for any poset $\mathcal{P}$, its induced saturation number (which is defined similar as for the antichain) grows at most polynomially: $\textrm{sat}^{\ast}(n, \mathcal{P})=O(n^c)$, where $c \leq |\mathcal{P}|^2/4+1$. This is based on joint works with Carla Groenland, Maria-Romina Ivan, Hugo Jacob and Tom Johnston.

Tue, 14 Nov 2023

14:00 - 15:00
L5

Fourier and Small ball estimates for word maps on unitary groups

Itay Glazer
(University of Oxford )
Abstract

Let w(x_1,...,x_r) be a word in a free group. For any group G, w induces a word map w:G^r-->G. For example, the commutator word w=xyx^(-1)y^(-1) induces the commutator map. If G is finite, one can ask what is the probability that w(g_1,...,g_r)=e, for a random tuple (g_1,...,g_r) of elements in G.

In the setting of finite simple groups, Larsen and Shalev showed there exists epsilon(w)>0 (depending only on w), such that the probability that w(g_1,...,g_r)=e is smaller than |G|^(-epsilon(w)), whenever G is large enough (depending on w).

In this talk, I will discuss analogous questions for compact groups, with a focus on the family of unitary groups; For example, given r independent Haar-random n by n unitary matrices A_1,...,A_r, what is the probability that w(A_1,...,A_r) is contained in a small ball around the identity matrix?

Based on a joint work with Nir Avni and Michael Larsen.  

 

Tue, 14 Nov 2023
13:00
L1

Carrollian perspective on celestial holography

Romain Ruzziconi
(Oxford)
Abstract

I will review some aspects of gravity in asymptotically flat spacetime and mention important challenges to obtain a holographic description in this framework. I will then present two important approaches towards flat space holography, namely Carrollian and celestial holography, and explain how they are related to each other. Similarities and differences between flat and anti-de Sitter spacetimes will be emphasized throughout the talk. 
 

Tue, 14 Nov 2023
11:00
Lecture Room 4

DPhil Presentations

Sarah-Jean Meyer, Satoshi Hayakawa
(Mathematical Institute (University of Oxford))
Abstract

As part of the internal seminar schedule for Stochastic Analysis for this coming term, DPhil students have been invited to present on their works to date. Student talks are 20 minutes, which includes question and answer time. 

 

Students presenting are:

Sara-Jean Meyer, supervisor Massimiliano Gubinelli

Satoshi Hayakawa, supervisor Harald Oberhauser