Mon, 25 Apr 2022

15:30 - 16:30
L3

Scaling limits for Hastings-Levitov aggregation with sub-critical parameters

JAMES NORRIS
(University of Cambridge)
Abstract


We consider, in a framework of iterated random conformal maps, a two-parameteraggregation model of Hastings-Levitov type, in which the size and intensity of new particles are each chosen to vary as a power of the density of harmonic measure. Then we consider a limit
in which the overall intensity of particles become large, while the particles themselves become
small. For a certain `sub-critical' range of parameter values, we can show a law of large numbers and fluctuation central limit theorem. The admissible range of parameters includes an off-lattice version of the Eden model, for which we can show that disk-shaped clusters are stable.
Many open problem remain, not least because the limit PDE does not yet have a satisfactory mathematical theory.

This is joint work with Vittoria Silvestri and Amanda Turner.

Mon, 25 Apr 2022
14:15
L5

Ricci flows with nonstandard initial data

Peter Topping
(University of Warwick)
Abstract

Most Ricci flow theory takes the short-time existence of solutions as a starting point and ends up concerned with understanding the long-time limiting behaviour and the structure of any finite-time singularities that may develop along the way. In this talk I will look at what you can think of as singularities at time zero. I will describe some of the situations in which one would like to start a  Ricci flow with a space that is rougher than a smooth bounded curvature Riemannian manifold, and some of the situations in which one considers smooth initial data that is only achieved in a non-smooth way. A particularly interesting and useful case is the problem of starting a Ricci flow on a Riemann surface equipped with a measure. I will not be assuming expertise in Ricci flow theory. Parts of the talk are joint with either Hao Yin (USTC) or ManChun Lee (CUHK).

Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Fri, 22 Apr 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Joe Roberts, Matthew Shirley
(Mathematical Institute (University of Oxford))
Wed, 20 Apr 2022

10:00 - 11:00
C1

A geometric fundamental class for Smale spaces

Mike Whittaker
(Glasgow)
Abstract

A few years back, Smale spaces were shown to exhibit noncommutative Poincaré duality (with Jerry Kaminker and Ian Putnam). The fundamental class was represented as an extension by the compacts. In current work we describe a Fredholm module representation of the fundamental class. The proof uses delicate approximations of the Smale space arising from a refining sequence of (open) Markov partition covers. I hope to explain all these notions in an elementary manner. This is joint work with Dimitris Gerontogiannis and Joachim Zacharias.

Wed, 20 Apr 2022

09:00 - 10:00
Virtual

Optimization, Speed-up, and Out-of-distribution Prediction in Deep Learning

Wei Chen
(Chinese Academy of Sciences)
Further Information
Abstract

In this talk, I will introduce our investigations on how to make deep learning easier to optimize, faster to train, and more robust to out-of-distribution prediction. To be specific, we design a group-invariant optimization framework for ReLU neural networks; we compensate the gradient delay in asynchronized distributed training; and we improve the out-of-distribution prediction by incorporating “causal” invariance.

Tue, 19 Apr 2022

14:00 - 15:00
C6

Epidemics on networks: From complicated structures to simple dynamics

Bastian Prasse
(European Centre for Disease Prevention and Control)
Abstract

The spread of an infectious disease crucially depends on the contact patterns of individuals, which range from superspreaders and clustered communities to isolated individuals with only a few regular contacts. The contact network specifies all contacts either between individuals in a population or, on a coarser scale, the contacts between groups of individuals, such as households, age groups or geographical regions. The structure of the contact network has a decisive impact on the viral dynamics. However, in most scenarios, the precise network structure is unknown, which constitutes a tremendous obstacle to understanding and predicting epidemic outbreaks.

This talk focusses on a stark contrast: network structures are complicated, but viral dynamics on networks are simple. Specifically, denote the N x 1 viral state vector by I(t) = (I_1(t), ..., I_N(t)), where N is the network size and I_i(t) is the infection probability of individual i at time t. The dynamics are “simple” in the way that the state I(t) evolves in a subspace X of R^N of astonishingly low dimension dim(X) << N. The low dimensionality of the viral dynamics has far-reaching consequences. First, it is possible to predict an epidemic outbreak, even without knowing the network structure. Second, provided that the basic reproduction number R_0 is close to one, the Susceptible-Infectious-Susceptible (SIS) epidemic model has a closed-form solution for arbitrarily large and heterogeneous contact networks.

Fri, 01 Apr 2022

16:00 - 17:00
L3

What's it like working for Citadel Securities?

Oliver Sheriden-Methven (Citadel Securities)
Abstract

Dr Oliver Sheridan-Methven from Citadel Securities, (an InFoMM and MScMCF alumni), will be talking about his experiences from studying at the Mathematical Institute, interviewing for jobs, to working in finance. Now in Zurich, Oliver is a quantitative developer in the advanced scientific computing team at Citadel Securities, a world leading market maker. Citadel Securities specialises in ultra high frequency trading, low latency execution, and their researchers tackle cutting edge machine learning and data science problems on colossal data sets with humongous computational resources. Oliver will be talking about his own experiences, and also how mathematicians are naturally great fits for a huge number of roles at Citadel Securities.

Fri, 25 Mar 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Yu Tian, John Fitzgerald, Markus Dablander
(Mathematical Institute (University of Oxford))
Thu, 24 Mar 2022

16:00 - 17:00
Virtual

The Geometry of Linear Convolutional Networks

Kathlén Kohn
(KTH Royal Institute of Technology)
Further Information
Abstract

We discuss linear convolutional neural networks (LCNs) and their critical points. We observe that the function space (that is, the set of functions represented by LCNs) can be identified with polynomials that admit certain factorizations, and we use this perspective to describe the impact of the network's architecture on the geometry of the function space.

For instance, for LCNs with one-dimensional convolutions having stride one and arbitrary filter sizes, we provide a full description of the boundary of the function space. We further study the optimization of an objective function over such LCNs: We characterize the relations between critical points in function space and in parameter space and show that there do exist spurious critical points. We compute an upper bound on the number of critical points in function space using Euclidean distance degrees and describe dynamical invariants for gradient descent.

This talk is based on joint work with Thomas Merkh, Guido Montúfar, and Matthew Trager.

Thu, 24 Mar 2022

15:00 - 16:00
Virtual

Derived blow-ups using Rees algebras and virtual Cartier divisors

Jeroen Hekking
(KTH Stockholm)
Abstract

The blow-up B of a scheme X in a closed subscheme Z enjoys the universal property that for any scheme X' over X such that the pullback of Z to X' is an effective Cartier divisor, there is a unique morphism of X' into B over X. It is well-known that the blow-up commutes along flat base change.

In this talk, I will discuss a derived enhancement B' of B, namely the derived blow-up, which enjoys a universal property against all schemes over X, satisfies arbitrary (derived) base-change, and contains B as a closed subscheme. To this end, we will need some elements from derived algebraic geometry, which I will review along the way. This will allow us to construct the derived blow-up as the projective spectrum of the derived Rees algebra, and state its functor of points in terms of virtual Cartier divisors, using Weil restrictions.

This is based on ongoing joint work with Adeel Khan and David Rydh.

Sun, 20 Mar 2022

17:30 - 18:30
L1

Bach, the Universe & Everything - The Mathematics of Decisions

Orchestra of the Age of Enlightenment & Sam Cohen
(Oxford)
Further Information

Oxford Mathematics in partnership with Orchestra of the Age of Enlightenment - Bach, the Universe & Everything

The Mathematics of Decisions
Sunday 20 March, 5:30-6.30pm
Mathematical Institute, OX2 6GG

The Science:
In this talk, Oxford Mathematics's Samuel Cohen asks: how do you make decisions today when you know things will change tomorrow?

The Music:
JS Bach: Liebster Jesu, mein Verlangen (Dearest Jesus, my Desire, BWV 32)
This Cantata is in the form of a dialogue. It reminds us of what we have lost and what we can find.  

JS Bach: Prelude, Freu dich sehr, o meine Seele (BWV Anh. II 52)
William Byrd: Christe qui lux es et dies
Tomaso Albinoni: Adagio from Oboe Concerto Op 9 No. 2

Tickets £15: Buy tickets here

Fri, 18 Mar 2022
16:00
L6

Plaquette-dimer liquid with emergent fracton

Yizhi You
(Oxford University)
Further Information

The speaker will be in-person. It is also possible to join virtually via zoom.

Abstract

We consider close-packed tiling models of geometric objects -- a mixture of hardcore dimers and plaquettes -- as a generalisation of the familiar dimer models. Specifically, on an anisotropic cubic lattice, we demand that each site be covered by either a dimer on a z-link or a plaquettein the x-y plane. The space of such fully packed tilings has an extensive degeneracy. This maps onto a fracton-type `higher-rank electrostatics', which can exhibit a plaquette-dimer liquid and an ordered phase. We analyse this theory in detail, using height representations and T-duality to demonstrate that the concomitant phase transition occurs due to the proliferation of dipoles formed by defect pairs. The resultant critical theory can be considered as a fracton version of the Kosterlitz-Thouless transition. A significant new element is its UV-IR mixing, where the low energy behavior of the liquid phase and the transition out of it is dominated by local (short-wavelength) fluctuations, rendering the critical phenomenon beyond the renormalization group paradigm.

Thu, 17 Mar 2022

17:00 - 18:15

Deep Maths - machine learning and mathematics

Alex Davies, Andras Juhasz, Marc Lackenby, Geordie Williamson
Further Information

In December 2021 mathematicians at Oxford and Sydney universities together with their collaborators at DeepMind announced that they had successfully used tools from machine learning to discover new patterns in mathematics. But what exactly had they done and what are its implications for the future of mathematics and mathematicians?

This online event will feature short talks from each of the four collaborators explaining their work followed by a panel discussion addressing its wider implications.

The speakers:
Alex Davies - DeepMind
Andras Juhasz - University of Oxford
Marc Lackenby - University of Oxford
Geordie Williamson - University of Sydney

The panel will be chaired by Jon Keating, Sedleian Professor of Natural Philosophy in Oxford.

This is an online only lecture which every one is free to watch:
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 17 Mar 2022
14:00
L6

Seiberg-Witten Theory

Pyry Kuusela
((Oxford University))
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Tue, 15 Mar 2022

14:00 - 15:00
Virtual

FFTA: Exposure theory for learning complex networks with random walks

Andrei A. Klishin
(University of Pennsylvania)
Abstract

Random walks are a common model for the exploration and discovery of complex networks. While numerous algorithms have been proposed to map out an unknown network, a complementary question arises: in a known network, which nodes and edges are most likely to be discovered by a random walker in finite time? In this talk we introduce exposure theory, a statistical mechanics framework that predicts the learning of nodes and edges across several types of networks, including weighted and temporal, and show that edge learning follows a universal trajectory. While the learning of individual nodes and edges is noisy, exposure theory produces a highly accurate prediction of aggregate exploration statistics. As a specific application, we extend exposure theory to better understand human learning with its typical mental errors, and thus account for distortions of learned networks.

This talk is based on https://arxiv.org/abs/2202.11262

Tue, 15 Mar 2022
14:00
C6

Colouring locally sparse graphs with the first moment method

Eoin Hurley
(Heidelberg University)
Abstract

A classical theorem of Molloy and Johansson states that if a graph is triangle free and has maximum degree at most $\Delta$, then it has chromatic number at most $\frac{\Delta}{\log \Delta}$. This was extended to graphs with few edges in their neighbourhoods by Alon-Krivelevich and Sudakov, and to list chromatic number by Vu. I will give a full and self-contained proof of these results that relies only on induction and the first moment method.

Mon, 14 Mar 2022
16:00
Virtual

Amplituhedron-Like Geometries and the Product of Amplitudes

Gabriele Dian
(Durham)
Abstract

The on-shell superspace formulation of N=4 SYM allows the writing of all possible scattering processes in one compact object called the super-amplitude.   Famously, the super-amplitude integrand can be extracted from generalized polyhedra called the amplituhedron. In this talk, I will review this construction and present a natural generalization of the amplituhedron that we proved at tree level and conjectured at loop level to correspond to the product of two parity conjugate superamplitudes. The sum of all parity conjugate amplitudes corresponds to a particular limit of the supercorrelator through the Wilson Loop/Amplitude duality.  I will conclude by discussing this connection from a geometrical point of view. This talk is based on the reference arXiv:2106.09372 .

 

Mon, 14 Mar 2022

15:30 - 16:30
L3

TBC

GONCALO DOS REIS
(University of Edinburgh)
Abstract

TBC

Fri, 11 Mar 2022

14:00 - 15:00
L3

Examples of artificial intelligence uses in target identification and drug discovery

Dr Ramneek Gupta
(Novo Nordisk Research Centre Oxford University of Oxford)
Abstract

As biological data has become more accessible and available in biology and healthcare, we find increasing opportunities to leverage artificial intelligence to help with data integration and picking out patterns in complex data. In this short talk, we will provide glimpses of what we do at the Novo Nordisk Research Centre Oxford towards understanding patient journeys, and in the use of knowledge graphs to draw insights from diverse biomedical data streams

Fri, 11 Mar 2022

14:00 - 15:00
L6

An example of the Lyndon-Hochschild-Serre spectral sequence

Anja Meyer
(University of Manchester)
Abstract

Spectral sequences are computational tools to find the (co-)homology of mathematical objects and are used across various fields. In this talk I will focus on the LHS spectral sequence, which we associate to an extension of groups to compute group cohomology. The first part of the talk will serve as introduction to both group cohomology and general spectral sequences, where I hope to provide and intuition and some reduced formalism. As main example, and core of this talk, we will look at the LHS spectral sequence associated to the group extension $(\mathbb{Z}/3\mathbb{Z})^3 \rightarrow S \rightarrow \mathbb{Z}/3\mathbb{Z}$, where $S$ is a Sylow-3-subgroup of $SL_2(\mathbb{Z}/9\mathbb{Z})$. In particular I will present arguments that all differentials on the $E^2$ page vanish.

Fri, 11 Mar 2022

14:00 - 15:00
Virtual

Glacial reshaping of the Earth surface: From geological observations to modeling

Anders Damsgaard
(Aarhus University)
Abstract

The presence of glaciers and ice sheets leaves a significant imprint
on Earth's surface.  We steadily improve our physical understanding of
the involved processes, from the erosion of kilometer-deep fjords in
crystalline bedrock to the broad ice-marginal deposition of sediments.
This talk will highlight observations of landforms, sedimentary deposits,
laboratory experiments, and models that aim to capture the interplay
between ice and substratum.  I show how the interplay may play a role in
the future evolution of the West Antarctic Ice Sheet in a warming climate.