Mon, 11 Nov 2019

16:00 - 17:00
C1

On Serre's Uniformity Conjecture

Jay Swar
(Oxford)
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

Mon, 11 Nov 2019

16:00 - 17:00
L4

On some computable quasiconvex multiwell functions

Kewei Zhang
(University of Nottingham)
Abstract

The translation method for constructing quasiconvex lower bound of a given function in the calculus of variations and the notion of compensated convex transforms for tightly approximate functions in Euclidean spaces will be briefly reviewed. By applying the upper compensated convex transform to the finite maximum function we will construct computable quasiconvex functions with finitely many point wells contained in a subspace with rank-one matrices. The complexity for evaluating the constructed quasiconvex functions is O(k log k) with k the number of wells involved. If time allows, some new applications of compensated convexity will be briefly discussed.

Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Mon, 11 Nov 2019

15:45 - 16:45
L3

On a probabilistic interpretation of the parabolic-parabolic Keller Segel equations

MILICA TOMASEVIC
(Ecole Polytechnique Paris)
Abstract

The Keller Segel model for chemotaxis is a two-dimensional system of parabolic or elliptic PDEs.
Motivated by the study of the fully parabolic model using probabilistic methods, we give rise to a non linear SDE of McKean-Vlasov type with a highly non standard and singular interaction. Indeed, the drift of the equation involves all the past of one dimensional time marginal distributions of the process in a singular way. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: at each time each particle interacts with all the past of the other ones by means of a highly singular space-time kernel.

In this talk, we will analyse the above probabilistic interpretation in $d=1$ and $d=2$.

Mon, 11 Nov 2019

14:15 - 15:15
L3

A decomposition of the Brownian excursion

ANTON WAKOLBINGER
(University of Frankfurt)
Abstract

We discuss a realizationwise correspondence between a Brownian  excursion (conditioned to reach height one) and a triple consisting of

(1) the local time profile of the excursion,

(2) an array of independent time-homogeneous Poisson processes on the real line, and

(3) a fair coin tossing sequence,  where (2) and (3) encode the ordering by height respectively the left-right ordering of the subexcursions.

The three components turn out to be independent,  with (1) giving a time change that is responsible for the time-homogeneity of the Poisson processes.

 By the Ray-Knight theorem, (1) is the excursion of a Feller branching diffusion;  thus the metric structure associated with (2), which generates the so-called lookdown space, can be seen as representing the genealogy underlying the Feller branching diffusion. 

Because of the independence of the three components, up to a time change the distribution of this genealogy does not change under a conditioning on the local time profile. This gives also a natural access to genealogies of continuum populations under competition,  whose population size is modeled e.g. by the Fellerbranching diffusion with a logistic drift.

The lecture is based on joint work with Stephan Gufler and Goetz Kersting.

 

Mon, 11 Nov 2019

14:15 - 15:15
L4

Green's function estimates and the Poisson equation

Ovidiu Munteanu
(University of Connecticut)
Further Information

 

 

Abstract

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci
curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this
case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

Mon, 11 Nov 2019
12:45

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory

Nikolay Gromov
(King's College London)
Abstract

We present a first-principles derivation of a weak-strong duality between the four-dimensional fishnet theory in the planar limit and a discretized string-like model living in AdS5. At strong coupling, the dual description becomes classical and we demonstrate explicitly the classical integrability of the model. We test our results by reproducing the strong coupling limit of the 4-point correlator computed before non-perturbatively from the conformal partial wave expansion. Next, by applying the canonical quantization procedure with constraints, we show that the model describes a quantum integrable chain of particles propagating in AdS5. Finally, we reveal a discrete reparametrization symmetry of the model and reproduce the spectrum when known analytically. Due to the simplicity of our model, it could provide an ideal playground for holography. Furthermore, since the fishnet model and N=4 SYM theory are continuously linked our consideration could shed light on the derivation of AdS/CFT for the latter. This talk is based on recent work with Amit Sever.

Fri, 08 Nov 2019

16:00 - 17:00
L1

North Meets South

Joseph Keir and Priya Subramanian
Abstract

Speaker: Joseph Keir (North)
Title: Dispersion (or not) in nonlinear wave equations
Abstract: Wave equations are ubiquitous in physics, playing central roles in fields as diverse as fluid dynamics, electromagnetism and general relativity. In many cases of these wave equations are nonlinear, and consequently can exhibit dramatically different behaviour when their solutions become large. Interestingly, they can also exhibit differences when given arbitrarily small initial data: in some cases, the nonlinearities drive solutions to grow larger and even to blow up in a finite time, while in other cases solutions disperse just like the linear case. The precise conditions on the nonlinearity which discriminate between these two cases are unknown, but in this talk I will present a conjecture regarding where this border lies, along with some conditions which are sufficient to guarantee dispersion.

Speaker: Priya Subramanian (South)
Title: What happens when an applied mathematician uses algebraic geometry?
Abstract: A regular situation that an applied mathematician faces is to obtain the equilibria of a set of differential equations that govern a system of interest. A number of techniques can help at this point to simplify the equations, which reduce the problem to that of finding equilibria of coupled polynomial equations. I want to talk about how homotopy methods developed in computational algebraic geometry can solve for all solutions of coupled polynomial equations non-iteratively using an example pattern forming system. Finally, I will end with some thoughts on what other 'nails' we might use this new shiny hammer on.

 

Fri, 08 Nov 2019

15:00 - 16:00
N3.12

Simplicial Mixture Models - Fitting topology to data

James Griffin
(University of Coventry)
Abstract

Lines and planes can be fitted to data by minimising the sum of squared distances from the data to the geometric object.  But what about fitting objects from topology such as simplicial complexes?  I will present a method of fitting topological objects to data using a maximum likelihood approach, generalising the sum of squared distances.  A simplicial mixture model (SMM) is specified by a set of vertex positions and a weighted set of simplices between them.  The fitting process uses the expectation-maximisation (EM) algorithm to iteratively improve the parameters.

Remarkably, if we allow degenerate simplices then any distribution in Euclidean space can be approximated arbitrarily closely using a SMM with only a small number of vertices.  This theorem is proved using a form of kernel density estimation on the n-simplex.

Fri, 08 Nov 2019

14:00 - 15:00
L6

The role of ice shelves for marine ice sheet stability

Marianne Haseloff
(University of Oxford)
Further Information

The West Antarctic Ice Sheet is a marine ice sheet that rests on a bed below sea level. The stability of a marine ice sheet and its contribution to future sea level rise are controlled by the dynamics of the grounding line, where the grounded ice sheet transitions into a floating ice shelf. Recent observations suggest that Antarctic ice shelves experience widespread thinning due to contact with warming ocean waters, but quantifying the effect of these changes on marine ice sheet stability and extent remains a major challenge for both observational and modelling studies. In this talk, I show that grounding line stability of laterally confined marine ice sheets and outlet glaciers is governed by ice shelf dynamics, in particular calving front and melting conditions. I will discuss the implications of this dependence for projections of the future evolution of the West Antarctic Ice Sheet.

Fri, 08 Nov 2019

14:00 - 15:00
L1

Banish imposter feelings (and trust you belong!)

Maureen Freed and Ben Walker
Abstract

How can it be that so many clever, competent and capable people can feel that they are just one step away from being exposed as a complete fraud? Despite evidence that they are performing well they can still have that lurking fear that at any moment someone is going to tap them on the shoulder and say "We need to have a chat". If you've ever felt like this, or you feel like this right now, then this Friday@2 session might be of interest to you. We'll explore what "Imposter Feelings" are, why we get them and steps you can start to take to help yourself and others. This event is likely to be of interest to undergraduates and MSc students at all stages. 

Fri, 08 Nov 2019

12:00 - 13:00
L4

Algebra, Geometry and Topology of ERK Enzyme Kinetics

Heather Harrington
(Mathematical Institute (University of Oxford))
Abstract

In this talk I will analyse ERK time course data by developing mathematical models of enzyme kinetics. I will present how we can use differential algebra and geometry for model identifiability, and topological data analysis to study these the dynamics of ERK. This work is joint with Lewis Marsh, Emilie Dufresne, Helen Byrne and Stanislav Shvartsman.

Fri, 08 Nov 2019

10:00 - 11:00
L3

Financial modelling and utilisation of a diverse range of data sets in oil markets

Milos Krkic
(BP IST Data Strategists)
Abstract

We will present three problems that we are interested in:

Forecast of volatility both at the instrument and portfolio level by combining a model based approach with data driven research
We will deal with additional complications that arise in case of instruments that are highly correlated and/or with low volumes and open interest.
Test if volatility forecast improves metrics or can be used to derive alpha in our trading book.

Price predication using physical oil grades data
Hypothesis:
Physical markets are most reflective of true fundamentals. Derivative markets can deviate from fundamentals (and hence physical markets) over short term time horizons but eventually converge back. These dislocations would represent potential trading opportunities.
The problem:
Can we use the rich data from the physical market prices to predict price changes in the derivative markets?
Solution would explore lead/lag relationships amongst a dataset of highly correlated features. Also explore feature interdependencies and non-linearities.
The prediction could be in the form of a price target for the derivative (‘fair value’), a simple direction without magnitude, or a probabilistic range of outcomes.

Modelling oil balances by satellite data
The flow of oil around the world from being extracted, refined, transported and consumed, forms a very large dynamic network. At both regular and irregular intervals, we can make noisy measurements of the amount of oil at certain points in the network.
In addition, we have general macro-economic information about the supply and demand of oil in certain regions.
Based on that information, with general information about the connections between nodes in the network i.e. the typical rate of transfer, one can build a general model for how oil flows through the network.
We would like to build a probabilistic model on the network, representing our belief about the amount of oil stored at each of our nodes, which we refer to as balances.
We want to focus on particular parts of the network where our beliefs can be augmented by satellite data, which can be done by focusing on a sub network containing nodes that satellite measurements can be applied to.

Thu, 07 Nov 2019
16:00
L6

Number fields with prescribed norms

Rachel Newton
(Reading)
Abstract

Let G be a finite abelian group, let k be a number field, and let x be an element of k. We count Galois extensions K/k with Galois group G such that x is a norm from K/k. In particular, we show that such extensions always exist. This is joint work with Christopher Frei and Daniel Loughran.

Thu, 07 Nov 2019

16:00 - 17:30
L3

Liquid droplets on a surface

Andrew Archer
(Loughborough University)
Abstract

The talk will begin with an introduction to the science of what determines the behaviour of a liquid on a on a surface and giving an overview of some of the different theories that can be used to describe the shape and structure of the liquid in the drop. These include microscopic density functional theory (DFT), which describes the liquid structure on the scale of the individual liquid molecules, and mesoscopic thin film equation (PDE) and kinetic Monte-Carlo models. A DFT based method for calculating the binding potential ?(h) for a film of liquid on a solid surface, where h is the thickness of the liquid film, will be presented. The form of ?(h) determines whether or not the liquid wets the surface. Calculating drop profiles using both DFT and also from inputting ?(h) into the mesoscopic theory and comparing quantities such as the contact angle and the shape of the drops, we find good agreement between the two methods, validating the coarse-graining. The talk will conclude with a discussion of some recent work on modelling evaporating drops with applications to inkjet printing.

Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

Thu, 07 Nov 2019

14:30 - 15:30
N3.12

5d SCFT (part 1)

Max Hubner and Marieke Van Beest
Thu, 07 Nov 2019

14:00 - 15:00
L4

A posteriori error analysis for domain decomposition

Simon Tavener
(Colorado State University)
Abstract

Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.

Thu, 07 Nov 2019

12:00 - 13:00
L4

A new Federer-type characterization of sets of finite perimeter

Panu Lahti
(University of Augsburg)
Abstract

Federer’s characterization, which is a central result in the theory of functions of bounded variation, states that a set is of finite perimeter if and only if n−1-dimensional Hausdorff measure of the set's measure-theoretic boundary is finite. The measure-theoretic boundary consists of those points where both the set and its complement have positive upper density. I show that the characterization remains true if the measure-theoretic boundary is replaced by a smaller boundary consisting of those points where the lower densities of both the set and its complement are at least a given positive constant.

Thu, 07 Nov 2019
11:30
C4

Functional Modular Zilber-Pink with Derivatives

Vahagn Aslanyan
(UEA)
Abstract

I will present Pila's Modular Zilber-Pink with Derivatives (MZPD) conjecture, which is a Zilber-Pink type statement for the j-function and its derivatives, and discuss some weak and functional/differential analogues. In particular, I will define special varieties in each setting and explain the relationship between them. I will then show how one can prove the aforementioned weak/functional/differential MZPD statements using the Ax-Schanuel theorem for the j-function and its derivatives and some basic complex analytic geometry. Note that I gave a similar talk in Oxford last year (where I discussed a differential MZPD conjecture and proved it assuming an Existential Closedness conjecture for j), but this talk is going to be significantly different from that one (the approach presented in this talk will be mostly complex analytic rather than differential algebraic, and the results will be unconditional).

Wed, 06 Nov 2019
16:00
C1

JSJ Decompositions of Groups

Sam Shepherd
(University of Oxford)
Abstract

A graph of groups decomposition is a way of splitting a group into smaller and hopefully simpler groups. A natural thing to try and do is to keep splitting until you can't split anymore, and then argue that this decomposition is unique. This is the idea behind JSJ decompositions, although, as we shall see, the strength of the uniqueness statement for such a decomposition varies depending on the class of groups that we restrict our edge groups to

Tue, 05 Nov 2019

15:30 - 16:30
L4

Hilbert schemes of points of ADE surface singularities

Balazs Szendroi
(Oxford)
Abstract

I will discuss some recent results around Hilbert schemes of points on singular surfaces, obtained in joint work with Craw, Gammelgaard and Gyenge, and their connection to combinatorics (of coloured partitions) and representation theory (of affine Lie algebras and related algebras such as their W-algebra). 

Tue, 05 Nov 2019

15:30 - 16:30
L6

Some new perspectives on moments of random matrices

Neil O’Connell
(University College Dublin)
Abstract

The study of 'moments' of random matrices (expectations of traces of powers of the matrix) is a rich and interesting subject, with fascinating connections to enumerative geometry, as discovered by Harer and Zagier in the 1980’s. I will give some background on this and then describe some recent work which offers some new perspectives (and new results). This talk is based on joint work with Fabio Deelan Cunden, Francesco Mezzadri and Nick Simm.

Tue, 05 Nov 2019
14:30
L5

Parameter Optimization in a Global Ocean Biogeochemical Model

Sophy Oliver
(Oxford)
Abstract

Ocean biogeochemical models used in climate change predictions are very computationally expensive and heavily parameterised. With derivatives too costly to compute, we optimise the parameters within one such model using derivative-free algorithms with the aim of finding a good optimum in the fewest possible function evaluations. We compare the performance of the evolutionary algorithm CMA-ES which is a stochastic global optimization method requiring more function evaluations, to the Py-BOBYQA and DFO-LS algorithms which are local derivative-free solvers requiring fewer evaluations. We also use initial Latin Hypercube sampling to then provide DFO-LS with a good starting point, in an attempt to find the global optimum with a local solver. This is joint work with Coralia Cartis and Samar Khatiwala.
 

Tue, 05 Nov 2019

14:15 - 15:15
L4

Axiomatizability and profinite groups

Dan Segal
(Oxford University)
Abstract

A mathematical structure is `axiomatizable' if it is completely determined by some family of sentences in a suitable first-order language. This idea has been explored for various kinds of structure, but I will concentrate on groups. There are some general results (not many) about which groups are or are not axiomatizable; recently there has been some interest in the sharper concept of 'finitely axiomatizable' or FA - that is, when only a finite set of sentences (equivalently, a single sentence) is allowed.

While an infinite group cannot be FA, every finite group is so, obviously. A profinite group is kind of in between: it is infinite (indeed, uncountable), but compact as a topological group; and these groups share many properties of finite groups, though sometimes for rather subtle reasons. I will discuss some recent work with Andre Nies and Katrin Tent where we prove that certain kinds of profinite group are FA among profinite groups. The methods involve a little model theory, and quite a lot of group theory.

 

Tue, 05 Nov 2019

14:00 - 15:00
L6

Combinatorial discrepancy and a problem of J.E. Littlewood

Julian Sahasrabudhe
(University of Cambridge)
Further Information

Given a collection of subsets of a set X, the basic problem in combinatorial discrepancy theory is to find an assignment of 1,-1 to the elements of X so that the sums over each of the given sets is as small as possible. I will discuss how the sort of combinatorial reasoning used to think about problems in combinatorial discrepancy can be used to solve an old conjecture of J.E. Littlewood on the existence of ``flat Littlewood polynomials''.

This talk is based on joint work with Paul Balister, Bela Bollobas, Rob Morris and Marius Tiba.
 

Tue, 05 Nov 2019
14:00
L5

Globally convergent least-squares optimisation methods for variational data assimilation

Maha Kaouri
(University of Reading)
Abstract

The variational data assimilation (VarDA) problem is usually solved using a method equivalent to Gauss-Newton (GN) to obtain the initial conditions for a numerical weather forecast. However, GN is not globally convergent and if poorly initialised, may diverge such as when a long time window is used in VarDA; a desirable feature that allows the use of more satellite data. To overcome this, we apply two globally convergent GN variants (line search & regularisation) to the long window VarDA problem and show when they locate a more accurate solution versus GN within the time and cost available.
Joint work with Coralia Cartis, Amos S. Lawless, Nancy K. Nichols.

Tue, 05 Nov 2019

12:45 - 14:00
C5

Dimensionality reduction techniques for global optimization

Adilet Otemissov
(Oxford University)
Abstract

We consider the problem of global minimization with bound constraints. The problem is known to be intractable for large dimensions due to the exponential increase in the computational time for a linear increase in the dimension (also known as the “curse of dimensionality”). In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality — functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.

Extending the idea of random subspace embeddings in Wang et al. (2013), we introduce a new framework (called REGO) compatible with any global min- imization algorithm. Within REGO, a new low-dimensional problem is for- mulated with bound constraints in the reduced space. We provide probabilistic bounds for the success of REGO; these results indicate that the success is depen- dent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results show that high success rates can be achieved with only one embedding and that rates are independent of the ambient dimension of the problem.

 

Tue, 05 Nov 2019

12:00 - 13:15
L4

Quantum Chaos in Perspective

Jon Keating
(Oxford University)
Abstract

 I will review some of the major research themes in Quantum Chaos over the past 50 years, and some of the questions currently attracting attention in the mathematics and physics literatures.

Tue, 05 Nov 2019

12:00 - 13:00
C1

Population distribution as pattern formation on landscapes

Takaaki Aoki
(Mathematical Institute)
Abstract

Cities and their inter-connected transport networks form part of the fundamental infrastructure developed by human societies. Their organisation reflects a complex interplay between many natural and social factors, including inter alia natural resources, landscape, and climate on the one hand, combined with business, commerce, politics, diplomacy and culture on the other. Nevertheless, despite this complexity, there has been some success in capturing key aspects of city growth and network formation in relatively simple models that include non-linear positive feedback loops. However, these models are typically embedded in an idealised, homogeneous space, leading to regularly-spaced, lattice-like distributions arising from Turing-type pattern formation. Here we argue that the geographical landscape plays a much more dominant, but neglected role in pattern formation. To examine this hypothesis, we evaluate the weighted distance between locations based on a least cost path across the natural terrain, determined from high-resolution digital topographic databases for Italy. These weights are included in a co-evolving, dynamical model of both population aggregation in cities, and movement via an evolving transport network. We compare the results from the stationary state of the system with current population distributions from census data, and show a reasonable fit, both qualitatively and quantitatively, compared with models in homogeneous space. Thus we infer that that addition of weighted topography from the natural landscape to these models is both necessary and almost sufficient to reproduce the majority of the real-world spatial pattern of city sizes and locations in this example.

Mon, 04 Nov 2019

16:00 - 17:00
C1

What is Arakelov Geometry?

Esteban Gomezllata Marmolejo
(Oxford)
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Arakelov theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

Mon, 04 Nov 2019

16:00 - 17:00
L4

An optimal transport formulation of the Einstein equations of general relativity

Andrea Mondino
(Oxford)
Abstract

In the seminar I will present a recent work joint with  S. Suhr (Bochum) giving an optimal transport formulation of the full Einstein equations of general relativity, linking the (Ricci) curvature of a space-time with the cosmological constant and the energy-momentum tensor. Such an optimal transport formulation is in terms of convexity/concavity properties of the Shannon-Bolzmann entropy along curves of probability measures extremizing suitable optimal transport costs. The result gives a new connection between general relativity and  optimal transport; moreover it gives a mathematical reinforcement of the strong link between general relativity and thermodynamics/information theory that emerged in the physics literature of the last years.

Mon, 04 Nov 2019
15:45
L6

The Euler characteristic of Out(F_n) and renormalized topological field theory

Michael Borinsky
(Nikhef)
Abstract

I will report on recent joint work with Karen Vogtmann on the Euler characteristic of $Out(F_n)$ and the moduli space of graphs. A similar study has been performed in the seminal 1986 work of Harer and Zagier on the Euler characteristic of the mapping class group and the moduli space of curves. I will review a topological field theory proof, due to Kontsevich, of Harer and Zagier´s result and illustrate how an analogous `renormalized` topological field theory argument can be applied to $Out(F_n)$.

Mon, 04 Nov 2019

15:45 - 16:45
L3

Scaling limits for planar aggregation with subcritical fluctuations

AMANDA TURNER
(University of Lancaster)
Abstract


Planar random growth processes occur widely in the physical world. Examples include diffusion-limited aggregation (DLA) for mineral deposition and the Eden model for biological cell growth. One approach to mathematically modelling such processes is to represent the randomly growing clusters as compositions of conformal mappings. In 1998, Hastings and Levitov proposed one such family of models, which includes versions of the physical processes described above. An intriguing property of their model is a conjectured phase transition between models that converge to growing disks, and 'turbulent' non-disk like models. In this talk I will describe a natural generalisation of the Hastings-Levitov family in which the location of each successive particle is distributed according to the density of harmonic measure on the cluster boundary, raised to some power. In recent joint work with Norris and Silvestri, we show that when this power lies within a particular range, the macroscopic shape of the cluster converges to a disk, but that as the power approaches the edge of this range the fluctuations approach a critical point, which is a limit of stability. This phase transition in fluctuations can be interpreted as the beginnings of a macroscopic phase transition from disks to non-disks analogous to that present in the Hastings-Levitov family.
 

Mon, 04 Nov 2019

14:15 - 15:15
L3

Real-time optimization under forward rank-dependent performance criteria: time-consistent investment under probability distortion.

THALEIA ZARIPHOPOULOU
(Austin Texas)
Abstract

I will introduce the concept of forward rank-dependent performance processes, extending the original notion to forward criteria that incorporate probability distortions and, at the same time, accommodate “real-time” incoming market information. A fundamental challenge is how to reconcile the time-consistent nature of forward performance criteria with the time-inconsistency stemming from probability distortions. For this, I will first propose two distinct definitions, one based on the preservation of performance value and the other on the time-consistency of policies and, in turn, establish their equivalence. I will then fully characterize the viable class of probability distortion processes, providing a bifurcation-type result. This will also characterize the candidate optimal wealth process, whose structure motivates the introduction of a new, distorted measure and a related dynamic market. I will, then, build a striking correspondence between the forward rank-dependent criteria in the original market and forward criteria without probability distortions in the auxiliary market. This connection provides a direct construction method for forward rank-dependent criteria with dynamic incoming information. Furthermore, a direct by-product of our work are new results on the so-called dynamic utilities and time-inconsistent problems in the classical (backward) setting. Indeed, it turns out that open questions in the latter setting can be directly addressed by framing the classical problem as a forward one under suitable information rescaling.

Mon, 04 Nov 2019

14:15 - 15:15
L4

Infinite geodesics on convex surfaces

Alexander Lytchak
(Cologne)
Abstract

In the talk I will discuss the  following result and related analytic and geometric questions:   On the boundary of any convex body in the Euclidean space there exists at least one infinite geodesic.

Mon, 04 Nov 2019
12:45
L3

Supersymmetric phases of N = 4 SYM at large N

Alejandro Cabo Bizet
(King's College London)
Abstract

We show the existence of an infinite family of complex saddle-points at large N, for the matrix model of the superconformal index of SU(N) N = 4 super Yang-Mills theory on S3 × S1 with one chemical potential τ. The saddle-point configurations are labelled by points (m,n) on the lattice Λτ = Z τ + Z with gcd(m, n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m, n) times along the (A, B) cycles of the torus C/Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and its values at (m,n) saddles are determined by Fourier averages of the latter along directions of the torus. The actions of (0,1) and (1,0) agree with that of pure AdS5 and the Gutowski-Reall AdS5 black hole, respectively. The actions of the other saddles take a surprisingly simple form. Generically, they carry non vanishing entropy. The Gutowski-Reall black hole saddle dominates the canonical ensemble when τ is close to the origin, and other saddles dominate when τ approaches rational points. 

Fri, 01 Nov 2019

15:00 - 16:00
N3.12

The Persistence Mayer-Vietoris spectral sequence

Alvaro Torras Casas
(Cardiff University)
Abstract

In this talk, linear algebra for persistence modules will be introduced, together with a generalization of persistent homology. This theory permits us to handle the Mayer-Vietoris spectral sequence for persistence modules, and solve any extension problems that might arise. The result of this approach is a distributive algorithm for computing persistent homology. That is, one can break down the underlying data into different covering subsets, compute the persistent homology for each cover, and join everything together. This approach has the added advantage that one can recover extra geometrical information related to the barcodes. This addresses the common complaint that persistent homology barcodes are 'too blind' to the geometry of the data.

Fri, 01 Nov 2019

14:00 - 15:00
L1

Where does collaborating end and plagiarising begin?

Dr Chris Hollings
Abstract

Despite the stereotype of the lone genius working by themselves, most professional mathematicians collaborate with others.  But when you're learning maths as a student, is it OK to work with other people, or is that cheating?  And if you're not used to collaborating with others, then you might feel shy about discussing your ideas when you're not confident about them.  In this session, we'll explore ways in which you can get the most out of collaborations with your fellow students, whilst avoiding inadvertently passing off other people's work as your own.  This session will be suitable for undergraduate and MSc students at any stage of their degree who would like to increase their confidence in collaboration.  Please bring a pen or pencil!

Thu, 31 Oct 2019

16:30 - 17:30
L1

Complete Complexes and Spectral Sequences (COW Seminar)

Evangelos Routis
(Warwick)
Abstract

The space of complete collineations is an important and beautiful chapter of algebraic geometry, which has its origins in the classical works of Chasles, Schubert and many others, dating back to the 19th century. It provides a 'wonderful compactification' (i.e. smooth with normal crossings boundary) of the space of full-rank maps between two (fixed) vector spaces. More recently, the space of complete collineations has been studied intensively and has been used to derive groundbreaking results in diverse areas of mathematics. One such striking example is L. Lafforgue's compactification of the stack of Drinfeld's shtukas, which he subsequently used to prove the Langlands correspondence for the general linear group. 

In joint work with M. Kapranov, we look at these classical spaces from a modern perspective: a complete collineation is simply a spectral sequence of two-term complexes of vector spaces. We develop a theory involving more full-fledged (simply graded) spectral sequences with arbitrarily many terms. We prove that the set of such spectral sequences has the structure of a smooth projective variety, the 'variety of complete complexes', which provides a desingularization, with normal crossings boundary, of the 'Buchsbaum-Eisenbud variety of complexes', i.e. a 'wonderful compactification' of the union of its maximal strata.
 

Thu, 31 Oct 2019

16:00 - 17:00
L4

On a mean-field optimal control problem.

Vardan Voskanyan
(Centro de Matemática da Universidade de Coimbra)
Abstract

In this talk we consider a mean field optimal control problem with an aggregation-diffusion constraint, where agents interact through a potential, in the presence of a Gaussian noise term. Our analysis focuses on a PDE system coupling a Hamilton-Jacobi and a Fokker-Planck equation, describing the optimal control aspect of the problem and the evolution of the population of agents, respectively. We will discuss the existence and regularity of solutions for the aforementioned system. We notice this model is in close connection with the theory of mean-field games systems. However, a distinctive feature concerns the nonlocal character of the interaction; it affects the drift term in the Fokker-Planck equation as well as the Hamiltonian of the system, leading to new difficulties to be addressed.

Thu, 31 Oct 2019
16:00
L6

Mordell-Weil groups as Galois modules

Christian Wuthrich
(Nottingham)
Abstract

Let $E/k$ be an elliptic curve over a number field and $K/k$ a Galois extension with group $G$. What can we say about $E(K)$ as a Galois module? Not just what complex representations appear, but its structure as a $\mathbb{Z}[G]$-module. We will look at some examples with small $G$.

Thu, 31 Oct 2019

16:00 - 17:30
L3

Towards Simulating Cells of Higher Organisms from the Fundamental Physico-Chemical Principles

Prof. Garegin Papoian
(University of Maryland)
Abstract


One of the key unsolved challenges at the interface of physical and life sciences is to formulate comprehensive computational modeling of cells of higher organisms that is based on microscopic molecular principles of chemistry and physics. Towards addressing this problem, we have developed a unique reactive mechanochemical force-field and software, called MEDYAN (Mechanochemical Dynamics of Active Networks: http://medyan.org).  MEDYAN integrates dynamics of multiple mutually interacting phases: 1) a spatially resolved solution phase is treated using a reaction-diffusion master equation; 2) a polymeric gel phase is both chemically reactive and also undergoes complex mechanical deformations; 3) flexible membrane boundaries interact mechanically and chemically with both solution and gel phases.  In this talk, I will first outline our recent progress in simulating multi-micron scale cytosolic/cytoskeletal dynamics at 1000 seconds timescale, and also highlight the outstanding challenges in bringing about the capability for routine molecular modeling of eukaryotic cells. I will also report on MEDYAN’s applications, in particular, on developing a theory of contractility of actomyosin networks and also characterizing dissipation in cytoskeletal dynamics. With regard to the latter, we devised a new algorithm for quantifying dissipation in cytoskeletal dynamics, finding that simulation trajectories of entropy production provide deep insights into structural evolution and self-organization of actin networks, uncovering earthquake-like processes of gradual stress accumulation followed by sudden rupture and subsequent network remodeling.
 

Thu, 31 Oct 2019

14:45 - 15:45
L3

Classifying Fine Compactified Universal Jacobians (COW seminar)

Nicola Pagani
(Liverpool)
Abstract

A fine compactified Jacobian is a proper open substack of the moduli space of simple sheaves. We will see that fine compactified Jacobians correspond to a certain combinatorial datum, essentially obtained by taking multidegrees of all elements of the compactified Jacobian. This picture generalizes to flat families of curves. We will discuss a classification result in the case when the family is the universal family over the moduli space of curves. This is a joint work with Jesse Kass.

Thu, 31 Oct 2019

14:30 - 15:30
N3.12

Large charge and supersymmetry

Cyril Closset
Abstract

We'll discuss the large charge expansion in CFTs with supersymmetry, focussing on 1908.10306 by Grassi, Komargodski and Tizzano.

 

Thu, 31 Oct 2019

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

On coarse spaces for solving the heterogenous Helmholtz equation with domain decomposition methods

Niall Bootland
(University of Strathclyde)
Abstract

The development of effective solvers for high frequency wave propagation problems, such as those described by the Helmholtz equation, presents significant challenges. One promising class of solvers for such problems are parallel domain decomposition methods, however, an appropriate coarse space is typically required in order to obtain robust behaviour (scalable with respect to the number of domains, weakly dependant on the wave number but also on the heterogeneity of the physical parameters). In this talk we introduce a coarse space based on generalised eigenproblems in the overlap (GenEO) for the Helmholtz equation. Numerical results within FreeFEM demonstrate convergence that is effectively independent of the wave number and contrast in the heterogeneous coefficient as well as good performance for minimal overlap.