Fri, 25 Feb 2022

15:00 - 16:00
L6

Homotopy, Homology, and Persistent Homology using Cech’s Closure Spaces

Peter Bubenik
(University of Florida)
Abstract

We use Cech closure spaces, also known as pretopological spaces, to develop a uniform framework that encompasses the discrete homology of metric spaces, the singular homology of topological spaces, and the homology of (directed) clique complexes, along with their respective homotopy theories. We obtain nine homology and six homotopy theories of closure spaces. We show how metric spaces and more general structures such as weighted directed graphs produce filtered closure spaces. For filtered closure spaces, our homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure spaces and use it to prove that our persistence modules and their persistence diagrams are stable. We also extend the definitions Vietoris-Rips and Cech complexes to closure spaces and prove that their persistent homology is stable.

This is joint work with Nikola Milicevic.

Fri, 25 Feb 2022

14:00 - 15:00
L6

Iwahori-Hecke algebras and equivariant K-theory of the affine Flag variety

Tom Zielinski
(University of Oxford)
Abstract

In this talk, I will talk about the category of coherent sheaves on the affine Flag variety of a simply-connected reductive group over $\mathbb{C}$. In particular, I'll explain how the convolution product naturally leads to a construction of the Iwahori-Hecke algebra, and present some combinatorics related to computing duals in this category.

Fri, 25 Feb 2022

14:00 - 15:00
L3

Navigating through a noisy world

Prof Kevin Painter
(Interuniversity Department of Regional & Urban Studies and Planning Politecnico di Torino)
Abstract

In collective navigation a population travels as a group from an origin to a destination. Famous examples include the migrations of birds and whales, between winter and summer grounds, but collective movements also extend down to microorganisms and cell populations. Collective navigation is believed to improve the efficiency of migration, for example through the presence of more knowledgeable individuals that guide naive members ("leader-follower behaviour") or through the averaging out of individual uncertainty ("many wrongs"). In this talk I will describe both individual and continuous approaches for modelling collective navigation. We investigate the point at which group information becomes beneficial to migration and how it can help a population navigate through areas with poor guidance information. We also explore the effectiveness of different modes through which a leader can herd a group of naïve followers. As an application we will consider the impact of noise pollution on the migration of whales through the North Sea.

Fri, 25 Feb 2022

14:00 - 15:00
L1

Preparing for exams with A4 summary sheets

Dr Vicky Neale
Further Information

This session will offer some tips on preparing the A4 summary sheets permitted for Part B, Part C and MSc exams this summer. It will also include wider advice about preparing for and sitting in-person exams. If you have questions, please do send them in advance (by 21 February) via https://vevox.app/#/m/174169279 and we'll try to address as many as possible during the session.

This session is aimed at Part B, Part C and MSc students sitting exams this summer. A separate session in Week 7 will be aimed at Prelims and Part A students.

Fri, 25 Feb 2022

14:00 - 15:00
L6

Multiscale Modeling of Layered Anisotropic Stratified Turbulence

Greg Chini
(University of New Hampshire)
Abstract

Stably density stratified shear flows arise widely in geophysical settings. Instabilities of these flows occur on scales that are too small to be directly resolved in numerical simulations, e.g., of the oceans and atmosphere, yet drive diabatic mixing events that often exert a controlling influence on much larger-scale processes. In the limit of strong stratification, the flows are characterized by the emergence of highly anisotropic layer-like structures with much larger horizontal than vertical scales. Owing to their relative horizontal motion, these structures are susceptible to stratified shear instabilities that drive spectrally non-local energy transfers. To efficiently describe the dynamics of this ``layered anisotropic stratified turbulence'' regime, a multiple-scales asymptotic analysis of the non-rotating Boussinesq equations is performed. The resulting asymptotically-reduced equations are shown to have a generalized quasi-linear (GQL) form that captures the essential physics of strongly stratified shear turbulence. The model is used to investigate the mixing efficiency of certain exact coherent states (ECS) arising in strongly stratified Kolmogorov flow. The ECS are computed using a new methodology for numerically integrating slow--fast GQL systems that obviates the need to explicitly resolve the fast dynamics associated with the stratified shear instabilities by exploiting an emergent marginal stability constraint.

Fri, 25 Feb 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Sophie Abrahams, Anna Berryman
(Mathematical Institute (University of Oxford))
Thu, 24 Feb 2022

16:00 - 17:00
L4

Euler characteristics and epsilon constants of curves over finite fields - some wild stuff

Bernhard Koeck
(University of Southampton)
Abstract

Let X be a smooth projective curve over a finite field equipped with an action of a finite group G. I’ll first briefly introduce the corresponding Artin L-function and a certain equivariant Euler characteristic. The main result will be a precise relation between the epsilon constants appearing in the functional equations of Artin L-functions and that Euler characteristic if the projection X  X/G is at most weakly ramified. This generalises a theorem of Chinburg for the tamely ramified case. I’ll end with some speculations in the arbitrarily wildly ramified case. This is joint work with Helena Fischbacher-Weitz and with Adriano Marmora.

Thu, 24 Feb 2022

15:00 - 16:00
C2

TBC

TBC
Thu, 24 Feb 2022
14:00
L6

3d N=4 and Mirror Symmetry

Lea Bottini
((Oxford University))
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Thu, 24 Feb 2022
14:00
Virtual

Paving a Path for Polynomial Preconditioning in Parallel Computing

Jennifer Loe
(Sandia National Laboratories)
Abstract

Polynomial preconditioning for linear solvers is well-known but not frequently used in current scientific applications.  Furthermore, polynomial preconditioning has long been touted as well-suited for parallel computing; does this claim still hold in our new world of GPU-dominated machines?  We give details of the GMRES polynomial preconditioner and discuss its simple implementation, its properties such as eigenvalue remapping, and choices such as the starting vector and added roots.  We compare polynomial preconditioned GMRES to related methods such as FGMRES and full GMRES without restarting. We conclude with initial evaluations of the polynomial preconditioner for parallel and GPU computing, further discussing how polynomial preconditioning can become useful to real-word applications.

 

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 24 Feb 2022

12:00 - 13:00
L1

Axi-symmetric necking versus Treloar-Kearsley instability in a hyperelastic sheet under equibiaxial stretching

Yibin Fu
(Keele University))
Abstract

This is a preparatory study for our ultimate goal of understanding the various instabilities associated with an electrodes-coated dielectric membrane that is subject to mechanical stretching and electric loading. Leaving out electric loading for the moment, we consider bifurcations from the homogeneous solution of a circular or square hyperelastic sheet that is subjected to equibiaxial stretching under either force- or displacement-controlled edge conditions. We derive the condition for axisymmetric necking and show, for the class of strain-energy functions considered, that the critical stretch for necking is greater than the critical stretch for the Treloar-Kearsley (TK) instability and less than the critical stretch for the limiting-point instability. Abaqus simulations are conducted to verify the bifurcation conditions and the expectation that the TK instability should occur first under force control, but when the edge displacement is controlled the TK instability is suppressed, and it is the necking instability that will be observed. It is also demonstrated that axisymmetric necking follows a growth/propagation process typical of all such localization problems.

Thu, 24 Feb 2022
11:45
Virtual

Absolute Model Companionship, the AMC-spectrum of set theory, and the continuum problem

Matteo Viale
(University of Torino)
Abstract

We introduce a classification tool for mathematical theories based on Robinson's notion of model companionship; roughly the idea is to attach to a mathematical theory $T$ those signatures $L$ such that $T$ as axiomatized in $L$ admits a model companion. We also introduce a slight strengthening of model companionship (absolute model companionship - AMC) which characterize those model companionable $L$-theories $T$ whose model companion is axiomatized by the $\Pi_2$-sentences for $L$ which are consistent with the universal theory of any $L$-model of $T$.

We use the above to analyze set theory, and we show that the above classification tools can be used to extract (surprising?) information on the continuum problem.

Wed, 23 Feb 2022

16:00 - 17:00
C3

Detecting topological features in the boundary of a group

Joseph MacManus
(University of Oxford)
Abstract

The Gromov boundary of a hyperbolic group is a useful topological invariant, the properties of which can encode all sorts of algebraic information. It has found application to some algorithmic questions, such as finding finite splittings (Dahmani-Groves) and, more recently, computing JSJ-decompositions (Barrett). In this talk we will introduce the boundary of a hyperbolic group. We'll outline how one can approximate the boundary with "large spheres" in the Cayley graph, in order to search for topological features. Finally, we will also discuss how this idea is applied in the aforementioned results. 

Wed, 23 Feb 2022

14:00 - 15:00
L5

The chiral algebras of class S

Sujay Nair
Abstract

In 2013, Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees found a remarkable correspondence between SCFTs in 4d with N ≥ 2 and vertex algebras. The chiral algebras of class S, i.e. the vertex algebras associated to theories of Class S, are of particular interest as they exhibit rich algebraic structures arising from the requirement of generalised S-duality. I will explain a mathematical construction of these vertex algebras, due to Arakawa, that is remarkably uniform and requires no knowledge of the underlying SCFT. Time permitting, I will detail a recent generalisation of this construction to the case of the chiral algebras of class S with outer automorphism twist lines.

Wed, 23 Feb 2022

14:00 - 16:00
Virtual

Topics on Nonlinear Hyperbolic PDEs

Gui-Qiang G. Chen
(Oxford University)
Further Information

Dates/ Times (GMT): 2pm – 4pm Wednesdays 9th, 16th, 23rd Feb, and 2nd March

Course Length: 8 hrs total (4 x 2 hrs)

Abstract

Aimed: An introduction to the nonlinear theory of hyperbolic PDEs, as well as its close connections with the other areas of mathematics and wide range of applications in the sciences.

Wed, 23 Feb 2022
14:00

TBA

Jemima Tabeart
Abstract

TBA

Wed, 23 Feb 2022
12:00
L6

Almost Robinson geometry

Arman Taghavi Chabert
(Warsaw)
Abstract

Non-shearing congruences of null geodesics on four-dimensional Lorentzian manifolds are fundamental objects of mathematical relativity. Their prominence in exact solutions to the Einstein field equations is supported by major results such as the Robinson, Goldberg-Sachs and Kerr theorems. Conceptually, they lie at the crossroad between Lorentzian conformal geometry and Cauchy-Riemann geometry, and are one of the original ingredients of twistor theory.
 
Identified as involutive totally null complex distributions of maximal rank, such congruences generalise to any even dimensions, under the name of Robinson structures. Nurowski and Trautman aptly described them as Lorentzian analogues of Hermitian structures. In this talk, I will give a survey of old and new results in the field.

Tue, 22 Feb 2022

14:00 - 15:00
Virtual

X-centrality, node immunization, and eigenvector localization

Leo Torres
(Max Planck Institute)
Abstract

 

The non-backtracking matrix and its eigenvalues have many applications in network science and graph mining. For example, in network epidemiology, the reciprocal of the largest eigenvalue of the non-backtracking matrix is a good approximation for the epidemic threshold of certain network dynamics. In this work, we develop techniques that identify which nodes have the largest impact on the leading non-backtracking eigenvalue. We do so by studying the behavior of the spectrum of the non-backtracking matrix after a node is removed from the graph, which can be thought of as immunizing a node against the spread of disease. From this analysis we derive a centrality measure which we call X-degree, which is then used to predict which nodes have a large influence in the epidemic threshold. Finally, we discuss work currently in progress on connections with eigenvector localization and percolation theory.

Tue, 22 Feb 2022
14:00
C2

Minimum degree stability and locally colourable graphs

Freddie Illingworth
(Oxford)
Abstract

We tie together two natural but, a priori, different themes. As a starting point consider Erdős and Simonovits's classical edge stability for an $(r + 1)$-chromatic graph $H$. This says that any $n$-vertex $H$-free graph with $(1 − 1/r + o(1)){n \choose 2}$ edges is close to (within $o(n^2)$ edges of) $r$-partite. This is false if $1 − 1/r$ is replaced by any smaller constant. However, instead of insisting on many edges, what if we ask that the $n$-vertex graph has large minimum degree? This is the basic question of minimum degree stability: what constant $c$ guarantees that any $n$-vertex $H$-free graph with minimum degree greater than $cn$ is close to $r$-partite? $c$ depends not just on chromatic number of $H$ but also on its finer structure.

Somewhat surprisingly, answering the minimum degree stability question requires understanding locally colourable graphs -- graphs in which every neighbourhood has small chromatic number -- with large minimum degree. This is a natural local-to-global colouring question: if every neighbourhood is big and has small chromatic number must the whole graph have small chromatic number? The triangle-free case has a rich history. The more general case has some similarities but also striking differences.

Tue, 22 Feb 2022

12:30 - 13:15
C5

Modelling laser-induced vapour bubbles in the treatment of kidney stones

Sophie Abrahams
(Mathematical Institute (University of Oxford))
Abstract

We present models of a vapour bubble produced during ureteroscopy and laser lithotripsy treatment of kidney stones. This common treatment for kidney stones involves passing a flexible ureteroscope containing a laser fibre via the ureter and bladder into the kidney, where the fibre is placed in contact with the stone. Laser pulses are fired to fragment the stone into pieces small enough to pass through an outflow channel. Laser energy is also transferred to the surrounding fluid, resulting in vapourisation and the production of a cavitation bubble.

While in some cases, bubbles have undesirable effects – for example, causing retropulsion of the kidney stone – it is possible to exploit bubbles to make stone fragmentation more efficient. One laser manufacturer employs a method of firing laser pulses in quick succession; the latter pulses pass through the bubble created by the first pulse, which, due to the low absorption rate of vapour in comparison to liquid, increases the laser energy reaching the stone.

As is common in bubble dynamics, we couple the Rayleigh-Plesset equation to an energy conservation equation at the vapour-liquid boundary, and an advection-diffusion equation for the surrounding liquid temperature.1 However, this present work is novel in considering the laser, not only as the cause of nucleation, but as a spatiotemporal source of heat energy during the expansion and collapse of a vapour bubble.
 

Numerical and analytical methods are employed alongside experimental work to understand the effect of laser power, pulse duration and pulse pattern. Mathematically predicting the size, shape and duration of a bubble reduces the necessary experimental work and widens the possible parameter space to inform the design and usage of lasers clinically.

Tue, 22 Feb 2022
12:00
Virtual

Anomalous boundaries of topological matter

Guo Chuan Thiang
(University of Peking)
Abstract

A topological insulator has anomalous boundary spectrum which completely fills up gaps in the bulk spectrum. This ``topologically protected’’ spectral property is a physical manifestation of coarse geometry and index theory ideas. Special examples involve spectral flow and gerbes, related to Hamiltonian anomalies, and they arise experimentally in quantum Hall systems, time-reversal invariant mod-2 insulators, and shallow-water waves.

Mon, 21 Feb 2022

16:00 - 17:00
C2

TBA

Julia Stadlmann
Mon, 21 Feb 2022
15:30
L5

Trisected 4-manifolds and link surgery

Abigail Thompson
Abstract

Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  

Mon, 21 Feb 2022

15:30 - 16:30
L3

The Wasserstein space of stochastic processes & computational aspects.

GUDMUND PAMMER
(ETH Zurich)
Abstract

Wasserstein distance induces a natural Riemannian structure for the probabilities on the Euclidean space. This insight of classical transport theory is fundamental for tremendous applications in various fields of pure and applied mathematics. We believe that an appropriate probabilistic variant, the adapted Wasserstein distance $AW$, can play a similar role for the class $FP$ of filtered processes, i.e. stochastic processes together with a filtration. In contrast to other topologies for stochastic processes, probabilistic operations such as the Doob-decomposition, optimal stopping and stochastic control are continuous w.r.t. $AW$. We also show that $(FP, AW)$ is a geodesic space, isometric to a classical Wasserstein space, and that martingales form a closed geodesically convex subspace. Finally we consider computational aspects and provide a novel method based on the Sinkhorn algorithm.

The talk is based on articles with Daniel Bartl, Mathias Beiglböck and Stephan Eckstein.

Mon, 21 Feb 2022
14:15
L5

Anti-self-dual instantons and codimension-1 collapse

Lorenzo Foscolo
(University College London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

We study the behaviour of anti-self-dual instantons on $\mathbb{R}^3 \times S^1$ (also known as calorons) under codimension-1 collapse, i.e. when the circle factor shrinks to zero length. In this limit, the instanton equation reduces to the well-known Bogomolny equation of magnetic monopoles on $\mathbb{R}^3 $. However, inspired by work of Kraan and van Baal in the mathematical physics literature, we show how $SU(2)$ instantons can be realised as superpositions of monopoles and "rotated monopoles" glued into a singular background abelian configuration consisting of Dirac monopoles of positive and negative charges. I will also discuss generalisations of the construction to calorons with arbitrary structure group and potential applications to the hyperkähler geometry of moduli spaces of calorons. This is joint work with Calum Ross.