The role of a strong confining potential in a nonlinear Fokker-Planck equation
Abstract
In this talk I will illustrate how solutions of nonlinear nonlocal Fokker-Planck equations in a bounded domain with no-flux boundary conditions can be approximated by Cauchy problems with increasingly strong confining potentials defined outside such domain. Two different approaches are analysed, making crucial use of uniform estimates for energy and entropy functionals respectively. In both cases we prove that the problem in a bounded domain can be seen as a limit problem in the whole space involving a suitably chosen sequence of large confining potentials.
This is joint work with Maria Bruna and José Antonio Carrillo.