Mathematical models for biological cooperation: lessons from bacteria
Maria is a member of the Biological Fluid Mechanics group. Her current research interests revolve around the themes of flows (flows around and in between filaments, flows in membranes), motors (in particular, bacterial flagellar motors) and oscillators (synchronization of coupled non-linear oscillators, and biological rhythms more broadly).
Abstract
applied mathematics.
Finite quotients of Coxeter groups
Abstract
We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients. Some success is found in the classes of affine and right-angled Coxeter groups. Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.
Nuclear dimension of Cuntz-Krieger algebras associated with shift spaces
Abstract
Associated to every shift space, the Cuntz-Krieger algebra (C-K algebra for abbreviation) is an invariant of conjugacy defined and developed by K. Matsumoto, S. Eilers, T. Carlsen, and many of their collaborators in the last decade. In particular, Carlsen defined the C-K algebra to be the full groupoid C*-algebra of the “cover”, which is a topological system consisting of a surjective local homeomorphism on a zero-dimensional space induced by the shift space.
In 2022, K. Brix proved that the C-K algebra of the Sturmian shift has finite nuclear dimension, where the Sturmian shift is the (unique) minimal shift space with the smallest complexity function: p_X(n)=n+1. In recent results (joint with Z. He), we show that for any minimal shift space with finitely many left special elements, its C-K algebra always have finite nuclear dimension. In fact, this can be further applied to the class of aperiodic shift spaces with non-superlinear growth complexity.
16:00
Fermions in low dimensions and non-Hermitian random matrices
Abstract
The ground state of N noninteracting Fermions in a rotating harmonic trap enjoys a one-to-one mapping to the complex Ginibre ensemble. This setup is equivalent to electrons in a magnetic field described by Landau levels. The mean, variance and higher order cumulants of the number of particles in a circular domain can be computed exactly for finite N and in three different large-N limits. In the bulk and at the edge of the spectrum the result is universal for a large class of rotationally invariant potentials. In the bulk the variance and entanglement entropy are proportional and satisfy an area law. The same universality can be proven for the quaternionic Ginibre ensemble and its corresponding generalisation. For the real Ginibre ensemble we determine the large-N limit at the origin and conjecture its universality in the bulk and at the edge.
15:00
Rigidity and automorphisms of group von Neumann algebras
Abstract
I will survey some recent results on rigidity and automorphisms of von Neumann algebras of groups with Kazhdan property (T) obtained in a series of joint papers with I. Chifan, A. Ioana, and B. Sun. Specifically, we show that certain groups, constructed via a group-theoretic version of Dehn filling in 3-manifolds, satisfy several conjectures proposed by A. Connes, V. Jones, and S. Popa. Previously, no nontrivial examples of groups satisfying these conjectures were known. At the core of our approach is the new notion of a wreath-like product of groups, which seems to be of independent interest.
Computing with H2-conforming finite elements in two and three dimensions
Abstract
Fourth-order elliptic problems arise in a variety of applications from thin plates to phase separation to liquid crystals. A conforming Galerkin discretization requires a finite dimensional subspace of H2, which in turn means that conforming finite element subspaces are C1-continuous. In contrast to standard H1-conforming C0-elements, C1-elements, particularly those of high order, are less understood from a theoretical perspective and are not implemented in many existing finite element codes. In this talk, we address the implementation of the elements. In particular, we present algorithms that compute C1-finite element approximations to fourth-order elliptic problems and which only require elements with at most C0-continuity. The algorithms are suitable for use in almost all standard finite element packages. Iterative methods and preconditioners for the subproblems in the algorithm will also be presented.
Fixation probability and suppressors of natural selection on higher-order networks
Abstract
Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.
Spin link homology and webs in type B
Abstract
In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.
This is based on joint work in progress with Ben Elias and David Rose.
Goal-oriented adaptivity for stochastic collocation finite element methods
Abstract
13:00
Scale and conformal invariance in 2-dimensional sigma models
Abstract
I shall review some aspects of the relationship between scale and conformal invariance in 2-dimensional sigma models. Then, I shall explain how such an investigation is related to the Perelman's ideas of proving the Poincare' conjecture. Using this, I shall demonstrate that scale invariant sigma models with B-field coupling and compact target space are conformally invariant. Several examples will also be presented that elucidate the results. The talk is based on the arXiv paper 2404.19526.
11:00
Free probability, path developments and signature kernels as universal scaling limits
Abstract
Scaling limits of random developments of a path into a matrix Lie Group have recently been used to construct signature-based kernels on path space, while mitigating some of the dimensionality challenges that come with using signatures directly. General linear group developments have been shown to be connected to the ordinary signature kernel (Muça Cirone et al.), while unitary developments have been used to construct a path characteristic function distance (Lou et al.). By leveraging the tools of random matrix theory and free probability theory, we are able to provide a unified treatment of the limits in both settings under general assumptions on the vector fields. For unitary developments, we show that the limiting kernel is given by the contraction of a signature against the monomials of freely independent semicircular random variables. Using the Schwinger-Dyson equations, we show that this kernel can be obtained by solving a novel quadratic functional equation.
This is joint work with Thomas Cass.
One-Day Meeting in Combinatorics
The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.
16:00
Inhomogeneous multiplicative diophantine approximation
Abstract
Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.
15:30
Hyperbolic manifolds, maps to the circle, and fibring
Abstract
We will discuss the problem of finding hyperbolic manifolds fibring over the circle; and show a method to construct and analyse maps from particular hyperbolic manifolds to S^1, which relies on Bestvina-Brady Morse theory.
This technique can be used to build and detect fibrations, algebraic fibrations, and Morse functions with minimal number of critical points, which are interesting in the even dimensional case.
After an introduction to the problem, and presentation of the main results, we will use the remaining time to focus on some easy 3-dimensional examples, in order to explicitly show the construction at work.
15:30
Multiscale analysis of wave propagation in random media
This is a joint seminar with the Stochastic Analysis & Mathematical Finance seminar.
15:30
Multiscale analysis of wave propagation in random media
This is a joint seminar with OxPDE.
Abstract
In this talk we study wave propagation in random media using multiscale analysis.
We show that the wavefield can be described by a stochastic partial differential equation.
We can then address the following physical conjecture: for large propagation distances, the wavefield has Gaussian statistics, mean zero, and second-order moments determined by radiative transfer theory.
The results for the first two moments can be proved under general circumstances.
The Gaussian conjecture for the statistical distribution of the wavefield can be proved in some propagation regimes, but it turns out to be wrong in other regimes.
14:15
Low rank approximation for faster optimization
Abstract
Low rank structure is pervasive in real-world datasets.
This talk shows how to accelerate the solution of fundamental computational problems, including eigenvalue decomposition, linear system solves, composite convex optimization, and stochastic optimization (including deep learning), by exploiting this low rank structure.
We present a simple method based on randomized numerical linear algebra for efficiently computing approximate top eigende compositions, which can be used to replace large matrices (such as Hessians and constraint matrices) with low rank surrogates that are faster to apply and invert.
The resulting solvers for linear systems (NystromPCG), composite convex optimization (NysADMM), and stochastic optimization (SketchySGD and PROMISE) demonstrate strong theoretical and numerical support, outperforming state-of-the-art methods in terms of speed and robustness to hyperparameters.
Mathematrix x WISOx: The Hidden Labour of Minorities - with Helen Byrne and Gesine Reinert
Abstract
In our first ever joint event with WISOx (Oxford Women in Statistics), we will be having a panel discussion about the hidden labour of minorities, such as extra committee work, editorial work, etc.
We will be joined by panellists Helen Byrne (Maths) and Gesine Reinert (Stats).
Persistent Minimal Models in Rational Homotopy Theory
Abstract
Some consequences of phenotypic heterogeneity in living active matter
Abstract
In this talk I will discuss how phenotypic heterogeneity affects emergent pattern formation in living active matter with chemical communication between cells. In doing so, I will explore how the emergent dynamics of multicellular communities are qualitatively different in comparison to the dynamics of isolated or non-interacting cells. I will focus on two specific projects. First, I will show how genetic regulation of chemical communication affects motility-induced phase separation in cell populations. Second, I will demonstrate how chemotaxis along self-generated signal gradients affects cell populations undergoing 3D morphogenesis.
Truncated current Lie algebras and their representation theory in positive characteristic.
Abstract
In this talk I will discuss the representation theory of truncated current Lie algebras in prime characteristic. I will first give an introduction to modular representation theory for general restricted Lie algebras and introduce the Kac-Weisfeiler conjectures. Then I will introduce a family of Lie algebras known as truncated current Lie algebras, and discuss their representation theory and its relationship with the representation theory of reductive Lie algebras in positive characteristic.
18:00
Frontiers in Quantitative Finance Seminar: Turning tail risks into tail winds: using information geometry for portfolio optimisation
Registration for the talk is free but required.
Abstract
A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).
Some model theory of Quadratic Geometries
Abstract