Research Working Lunch TT22
Abstract
11:30 Refreshments (tea, coffee and homemade biscuits)
12:00 Talks (main room)
13:15 Buffet Style Lunch (incl. tea, coffee and homemade cakes)
15:00 End
11:30 Refreshments (tea, coffee and homemade biscuits)
12:00 Talks (main room)
13:15 Buffet Style Lunch (incl. tea, coffee and homemade cakes)
15:00 End
After a general introduction to the study of random walks on groups, we discuss the relationship between limit theorems for random walks on Lie groups and Diophantine properties of the underlying distribution. Indeed, we will discuss the classical abelian case and more recent results by Bourgain-Gamburd for compact simple Lie groups such as SO(3). If time permits, we discuss some new results for non-compact simple Lie groups such as SL_2(R). We hope to touch on the relevant methods from harmonic analysis, number theory and additive combinatorics. The talk is aimed at a general audience.
Sessions will be as follows:
Tuesday 7th, 2:00pm-4:00pm
Wednesday 8th, 2:00pm-3:30pm
We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Thresholds for increasing properties of random structures are a central concern in probabilistic combinatorics and related areas. In 2006, Kahn and Kalai conjectured that for any nontrivial increasing property on a finite set, its threshold is never far from its "expectation-threshold," which is a natural (and often easy to calculate) lower bound on the threshold. In this talk, I will present recent progress on this topic. Based on joint work with Huy Tuan Pham.
I will discuss ongoing work with Toke Carlsen and Aidan Sims on ideal structure of C*-algebras of commuting local homeomorphisms. This is one aspect of a general attempt to bridge C*-algebras with multidimensional (symbolic) dynamics.
Let G(R) be the real points of a complex reductive algebraic group G. There are many difficult questions about admissible representations of real reductive groups which have (relatively) easy answers in the case of complex groups. Thus, it is natural to look for a relationship between representations of G and representations of G(R). In this talk, I will introduce a functor from admissible representations of G to admissible representations of G(R). This functor interacts nicely with many natural invariants, including infinitesimal character, associated variety, and restriction to a maximal compact subgroup, and it takes unipotent representations of G to unipotent representations of G(R).
Social, biological and physical systems are widely studied through the modeling of dynamical processes over networks, and one commonly investigates the interplay between structure and dynamics. I will discuss how cyclic patterns in networks can influence models for collective and diffusive processes, including generalized models in which dynamics are defined over simplicial complexes and multiplex networks. Our approach relies on homology theory, which is the subfield of mathematics that formally studies cycles (and more generally, k-dimensional holes). We will make use of techniques including persistent homology and Hodge theory to examine the role of cycles in helping organize dynamics onto low-dimensional manifolds. This pursuit represents an emerging interface between the fields of network-coupled dynamical systems and topological data analysis.
Sessions will be as follows:
Tuesday 7th, 2:00pm-4:00pm
Wednesday 8th, 2:00pm-3:30pm
We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.
Hydrodynamics allow for efficient computation of many-body dynamics and have been successfully used in the study of black hole horizons, collective behaviour of QCD matter in heavy ion collisions, and non-equilibrium behaviour in strongly-interacting condensed matter systems.
In this talk, I will present the application of hydrodynamics to quantum field theory with an infinite number of local conservation laws. Such an integrable system can be described within the recently developed framework of generalised hydrodynamics. I will present the key assumptions of generalised hydrodynamics as well as summarise some recent developments in this field. In particular, I will concentrate on the study of the SU(3)_2-Homogeneous sine-Gordon model. Thanks to the hydrodynamic approach, we were able to identify the key dynamical signatures of unstable excitations in this integrable quantum field theory and simulate the real time RG-flow of the theory between interacting and free conformal regimes.
The talk is based on joint work with Olalla Castro-Alvaredo, Cecilia De Fazio and Benjamin Doyon.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
We consider an oriented acyclic version of the Erdős-Rényi random graph: the set of vertices is {1,...,n}, and for each pair i < j, an edge from i to j is independently added to the graph with probability p. The length of the longest path in such a graph grows linearly with the number of vertices in the graph, and its growth rate is a deterministic function C of the probability p of presence of an edge.
Foss and Konstantopoulos introduced a coupling between these graphs and a particle system called the "Infinite-bin model". By using this coupling, we prove some properties of C, that it is analytic on (0,1], its development in series at point 1 and its asymptotic behaviour as p goes to 0.
I will introduce a new parabolic system for the flow of nematic liquid crystals, enjoying a free boundary condition. After recent works related to the construction of blow-up solutions for several critical parabolic problems (such as the Fujita equation, the heat flow of harmonic maps, liquid crystals without free boundary, etc...), I will construct a physically relevant weak solution blowing-up in finite time. We make use of the so-called inner/outer parabolic gluing. Along the way, I will present a set of optimal estimates for the Stokes operator with Navier slip boundary conditions. I will state several open problems related to the partial regularity of the system under consideration. This is joint work with F.-H. Lin (NYU), Y. Zhou (JHU) and J. Wei (UBC).
We show that ribbon concordance forms a partial ordering on the set of knots, answering a question of Gordon. The proof makes use of representation varieties of the knot groups to S O(N) and relations between them induced by a ribbon concordance.
(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.
Cryo-Electron Microscopy (cryo-EM) is an imaging technology that is revolutionizing structural biology. Cryo-electron microscopes produce many very noisy two-dimensional projection images of individual frozen molecules; unlike related methods, such as computed tomography (CT), the viewing direction of each particle image is unknown. The unknown directions and extreme noise make the determination of the structure of molecules challenging. While other methods for structure determination, such as x-ray crystallography and NMR, measure ensembles of molecules, cryo-electron microscopes produce images of individual particles. Therefore, cryo-EM could potentially be used to study mixtures of conformations of molecules. We will discuss a range of recent methods for analyzing the geometry of molecular conformations using cryo-EM data.
It is also possible to join online via Microsoft Teams.
Hydrodynamic excitations corresponding to sound and shear modes in fluids are characterized by gapless dispersion relations. In the hydrodynamic gradient expansion, their frequencies are represented by power series in spatial momenta. In this talk we will discuss the convergence properties of the hydrodynamic series by studying the associated spectral curve in the space of complexified frequency and complexified spatial momentum. For the N=4 supersymmetric Yang-Mills plasma at infinite 't Hooft coupling, we will use the holographic methods to demonstrate that the derivative expansions have finite non-zero radii of convergence. Obstruction to the convergence of hydrodynamic series arises from level-crossings in the quasinormal spectrum at complex momenta. We will discuss how finiteness of 't Hooft coupling affects the radius of convergence. We will show that the purely perturbative calculation in terms of inverse 't Hooft coupling gives the increasing radius of convergence when the coupling is decreasing. Applying the non-perturbative resummation techniques will make radius of convergence piecewise continuous function that decreases after the initial increase. Finally, we will provide arguments in favour of the non-perturbative approach and show that the presence of nonperturbative modes in the quasinormal spectrum can be indirectly inferred from the analysis of perturbative critical points.
In this talk, we will present a new class of invariants of multi-parameter persistence modules : \emph{projected barcodes}. Relying on Grothendieck's six operations for sheaves, projected barcodes are defined as derived pushforwards of persistence modules onto $\R$ (which can be seen as sheaves on a vector space in a precise sense). We will prove that the well-known fibered barcode is a particular instance of projected barcodes. Moreover, our construction is able to distinguish persistence modules that have the same fibered barcodes but are not isomorphic. We will present a systematic study of the stability of projected barcodes. Given F a subset of the 1-Lipschitz functions, this leads us to define a new class of well-behaved distances between persistence modules, the F-Integral Sheaf Metrics (F-ISM), as the supremum over p in F of the bottleneck distance of the projected barcodes by p of two persistence modules.
In the case where M is the collection in all degrees of the sublevel-sets persistence modules of a function f : X -> R^n, we prove that the projected barcode of M by a linear map p : R^n \to R is nothing but the collection of sublevel-sets barcodes of the post-composition of f by p. In particular, it can be computed using already existing softwares, without having to compute entirely M. We also provide an explicit formula for the gradient with respect to p of the bottleneck distance between projected barcodes, allowing to use a gradient ascent scheme of approximation for the linear ISM. This is joint work with François Petit.
In this talk I will introduce affine Hecke algebras and discuss some of their representation theory, in particular their Fourier transform. We will consider discrete series representations and how their formal degrees can help us understand them. There is no quantity like the formal degree available to help us similarly study limits of discrete series representations. I will sketch how this difficulty might be overcome by using cyclic cohomology and its pairing with K-theory to introduce generalized formal degrees.
In this talk I will review some of the key ideas behind the study of entanglement measures in 1+1D quantum field theories employing the so-called branch point twist field approach. This method is based on the existence of a one-to-one correspondence between different entanglement measures and different multi-point functions of a particular type of symmetry field. It is then possible to employ standard methods for the evaluation of correlation functions to understand properties of entanglement in bipartite systems. Time permitting, I will then present a recent application of this approach to the study of a new entanglement measure: the symmetry resolved entanglement entropy.
Jointly with Relativity
In this talk I will review some of the key ideas behind
the study of entanglement measures in 1+1D quantum field theories employing
the so-called branch point twist field approach. This method is based on the
existence of a one-to-one correspondence between different entanglement
measures and different multi-point functions of a particular type of
symmetry field. It is then possible to employ standard methods for the
evaluation of correlation functions to understand properties of entanglement
in bipartite systems. Time permitting, I will then present a recent
application of this approach to the study of a new entanglement measure: the
symmetry resolved entanglement entropy.
Representations of finite reductive groups have a rich, well-understood structure, first explored by Deligne--Lusztig. In joint work with Anne-Marie Aubert and Dan Ciubotaru, we show a way to lift some of this structure to representations of p-adic groups. In particular, we consider the relation between Lusztig's nonabelian Fourier transform and a certain involution we define on the level of p-adic groups. This talk will be an introduction to these ideas with a focus on examples.
Given a cover U of a family of smooth complex algebraic varieties, we associate with it a class C of structures locally definable in an o-minimal expansion of the reals, containing the cover U. We prove that the class is ℵ0-homogeneous over submodels and stable. It follows that C is categorical in cardinality ℵ1. In the one-dimensional case we prove that a slight modification of C is an abstract elementary class categorical in all uncountable cardinals.
We consider the Bayesian inverse problem of inferring the initial condition of a linear dynamical system from noisy output measurements taken after the initial time. In practical applications, the large dimension of the dynamical system state poses a computational obstacle to computing the exact posterior distribution. Balanced truncation is a system-theoretic method for model reduction which obtains an efficient reduced-dimension dynamical system by projecting the system operators onto state directions which simultaneously maximize energies defined by reachability and observability Gramians. We show that in our inference setting, the prior covariance and Fisher information matrices can be naturally interpreted as reachability and observability Gramians, respectively. We use these connections to propose a balancing approach to model reduction for the inference setting. The resulting reduced model then inherits stability properties and error bounds from system theory, and yields an optimal posterior covariance approximation.
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.