Thu, 07 May 2020

12:00 - 13:00
Virtual

Vectorial problems: sharp Lipschitz bounds and borderline regularity

Cristiana De FIlippis
(University of Oxford)
Abstract

Non-uniformly elliptic functionals are variational integrals like
\[
(1) \qquad \qquad W^{1,1}_{loc}(\Omega,\mathbb{R}^{N})\ni w\mapsto \int_{\Omega} \left[F(x,Dw)-f\cdot w\right] \, \textrm{d}x,
\]
characterized by quite a wild behavior of the ellipticity ratio associated to their integrand $F(x,z)$, in the sense that the quantity
$$
\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}}\mathcal R(z, B):=\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}} \frac{\mbox{highest eigenvalue of}\ \partial_{z}^{2} F(x,z)}{\mbox{lowest eigenvalue of}\  \partial_{z}^{2} F(x,z)} $$
may blow up as $|z|\to \infty$. 
We analyze the interaction between the space-depending coefficient of the integrand and the forcing term $f$ and derive optimal Lipschitz criteria for minimizers of (1). We catch the main model cases appearing in the literature, such as functionals with unbalanced power growth or with fast exponential growth such as
$$
w \mapsto \int_{\Omega} \gamma_1(x)\left[\exp(\exp(\dots \exp(\gamma_2(x)|Dw|^{p(x)})\ldots))-f\cdot w \right]\, \textrm{d}x
$$
or
$$
w\mapsto \int_{\Omega}\left[|Dw|^{p(x)}+a(x)|Dw|^{q(x)}-f\cdot w\right] \, \textrm{d}x.
$$
Finally, we find new borderline regularity results also in the uniformly elliptic case, i.e. when
$$\mathcal{R}(z,B)\sim \mbox{const}\quad \mbox{for all balls} \ \ B\Subset \Omega.$$

The talk is based on:
C. De Filippis, G. Mingione, Lipschitz bounds and non-autonomous functionals. $\textit{Preprint}$ (2020).

Wed, 06 May 2020

16:00 - 17:30
Virtual

Elementary embeddings and smaller large cardinals

Victoria Gitman
(City University of New York)
Abstract

A common theme in the definitions of larger large cardinals is the existence of elementary embeddings from the universe into an inner model. In contrast, smaller large cardinals, such as weakly compact and Ramsey cardinals, are usually characterized by their combinatorial properties such as existence of large homogeneous sets for colorings. It turns out that many familiar smaller large cardinals have elegant elementary embedding characterizations. The embeddings here are correspondingly ‘small’; they are between transitive set models of set theory, usually the size of the large cardinal in question. The study of these elementary embeddings has led us to isolate certain important properties via which we have defined robust hierarchies of large cardinals below a measurable cardinal. In this talk, I will introduce these types of elementary embeddings and discuss the large cardinal hierarchies that have come out of the analysis of their properties. The more recent results in this area are a joint work with Philipp Schlicht.

Wed, 06 May 2020
10:00
Virtual

Revisiting Leighton's Theorem

Daniel Woodhouse
(University of Oxford)
Abstract

Let X_1 and X_2 be finite graphs with isomorphic universal covers.

Leighton's graph covering theorem states that X_1 and X_2 have a common finite cover.

I will discuss recent work generalizing this theorem and how myself and Sam Shepherd have been applying it to rigidity questions in geometric group theory.

Tue, 05 May 2020

15:30 - 16:30

Large deviations for random matrices via spherical integrals

Alice Guionnet
(ENS Lyon)
Abstract

I will talk about how to get large deviations estimates for randomly rotated matrix models using the asymptotics of spherical (aka orbital, aka HCIZ) integrals. Compared to the talk I gave last week in integrable probability conference I will concentrate on random  matrices rather than symmetric functions.

Tue, 05 May 2020
15:30
Virtual

Multidimensional Erdős-Szekeres theorem

Benny Sudakov
(ETH Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of $(n-1)^2+1$ distinct real numbers contains a monotone subsequence of length $n$. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They raise the problem of how large should a $d$-dimesional array be in order to guarantee a "monotone" subarray of size $n \times n \times \ldots \times n$. In this talk we discuss this problem and show how to improve their original Ackerman-type bounds to at most a triple exponential. (Joint work with M. Bucic and T. Tran)

Tue, 05 May 2020
14:00
Virtual

Ryser's conjecture and more

Liana Yepremyan
(LSE)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A Latin square of order n is an $n \times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser, Brualdi and Stein from 60s which says that every Latin square of order $n \times n$ contains a transversal of order $n-1$. A closely related problem is 40 year old conjecture of Brouwer that every Steiner triple system of order $n$ contains a matching of size $\frac{n-4}{3}$. The third problem we'd like to mention asks how many distinct symbols in Latin arrays suffice to guarantee a full transversal? In this talk we discuss a novel approach to attack these problems. Joint work with Peter Keevash, Alexey Pokrovskiy and Benny Sudakov.

Mon, 04 May 2020

16:00 - 17:00

TBA

Mon, 04 May 2020

16:00 - 17:00

Connecting Generative adversarial networks with Mean Field Games

Xin Guo
(Berkeley, USA)
Abstract


Generative Adversarial Networks (GANs) have celebrated great empirical success, especially in image generation and processing. Meanwhile, Mean-Field Games (MFGs),  as analytically feasible approximations for N-player games, have experienced rapid growth in theory of controls. In this talk, we will discuss a new theoretical connections between GANs and MFGs. Interpreting MFGs as GANs, on one hand, allows us to devise GANs-based algorithm to solve MFGs. Interpreting GANs as MFGs, on the other hand, provides a new and probabilistic foundation for GANs. Moreover, this interpretation helps establish an analytical connection between GANs and Optimal Transport (OT) problems, the connection previously understood mostly from the geometric perspective. We will illustrate by numerical examples of using GANs to solve high dimensional MFGs, demonstrating its superior performance over existing methodology.

Mon, 04 May 2020
15:45
Virtual

Virtually algebraically fibered congruence subgroups

Ian Agol
(UC Berkeley)
Abstract

Addressing a question of Baker and Reid,

we give a criterion to show that an arithmetic group 

has a congruence subgroup that is algebraically

fibered. Some examples to which the criterion applies

include a hyperbolic 4-manifold group containing infinitely

many Bianchi groups, and a complex hyperbolic surface group.

This is joint work with Matthew Stover.

Mon, 04 May 2020
14:15
Virtual

Homology of moduli stacks of complexes

Jacob Gross
(Oxford)
Abstract

There are many known ways to compute the homology of the moduli space of algebraic vector bundles on a curve. For higher-dimensional varieties however, this problem is very difficult. It turns out that the moduli stack of objects in the derived category of a variety X, however, is topologically simpler than the moduli stack of vector bundles on X. We compute the rational homology of the moduli stack of complexes in the derived category of a smooth complex projective variety. For a certain class of varieties X including curves, surfaces, flag varieties, and certain 3- and 4-folds we get that the rational cohomology is freely generated by Künneth components of Chern characters of the universal complex––this allows us to identify Joyce's vertex algebra construction with a super-lattice vertex algebra on the rational cohomology of X in these cases. 

Mon, 04 May 2020
12:45
Virtual

Superstrings, Calabi-Yau Manifolds and Machine-Learning -- ZOOM SEMINAR

Yang-Hui He
(City University)
Abstract

We review how historically the problem of string phenomenology lead theoretical physics first to algebraic/diffenretial geometry, and then to computational geometry, and now to data science and AI.
With the concrete playground of the Calabi-Yau landscape, accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades, we show how the latest techniques in machine-learning can help explore problems of physical and mathematical interest.
 

Fri, 01 May 2020

16:00 - 17:00
Virtual

Guidance in applying for EPSRC fellowships

Laura McDonnell
(UKRI EPSRC)
Abstract

In this session, Laura will explain the process of applying for an EPSRC fellowship. In particular, there will be a discussion on the Future Leaders Fellowships, New Investigator Awards and Standard Grant applications. There will also be a discussion on applying for EPSRC funding more generally. Laura will answer any questions that people have. 

Thu, 30 Apr 2020

17:00 - 18:00

Quiver varieties and Kac-Moody algebras

Filip Zivanovic
Abstract

Quiver varieties are one of the main objects of study in Geometric Representation Theory. Defined by Nakajima in 1994, there has been a lot of research on them, but there is still a lot to be yet discovered, especially about their geometry. In this seminar, I will talk about their first use in Geometric Representation Theory as providing geometric representations of symmetric Kac-Moody Lie algebras.

Email @email to get a link to the Jitsi meeting room (it is included in the weekly announcements).

Thu, 30 Apr 2020

16:45 - 17:30
Virtual

Extensions of C*-algebras

Christian Bonicke
(University of Glasgow)
Further Information

UK Virtual operator algebras seminar by zoom: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Having its roots in classical operator theoretic questions, the theory of extensions of C*-algebras is now a powerful tool with applications in geometry and topology and of course within the theory of C*-algebras itself. In this talk I will give a gentle introduction to the topic highlighting some classical results and more recent applications and questions.

Thu, 30 Apr 2020

16:45 - 18:00
Virtual

Inverting a signature of a path

Weijun Xu
(University of Oxford)
Further Information
Abstract

Abstract: The signature of a path is a sequence of iterated coordinate integrals along the path. We aim at reconstructing a path from its signature. In the special case of lattice paths, one can obtain exact recovery based on a simple algebraic observation. For general continuously differentiable curves, we develop an explicit procedure that allows to reconstruct the path via piecewise linear approximations. The errors in the approximation can be quantified in terms of the level of signature used and modulus of continuity of the derivative of the path. The main idea is philosophically close to that for the lattice paths, and this procedure could be viewed as a significant generalisation. A key ingredient is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales.We will also discuss possible simplifications and improvements that may be potentially significant. Based on joint works with Terry Lyons, and also with Jiawei Chang, Nick Duffield and Hao Ni.

Thu, 30 Apr 2020

16:00 - 16:45
Virtual

Amenability via ultraproduct embeddings for II_1 factors

Scott Atkinson
(University of California Riverside)
Further Information

UK Virtual operator algebras seminar by zoom.  https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The property of amenability is a cornerstone in the study and classification of II_1 factor von Neumann algebras. Likewise, ultraproduct analysis is an essential tool in the subject. We will discuss the history, recent results, and open questions on characterizations of amenability for separable II_1 factors in terms of embeddings into ultraproducts.

Thu, 30 Apr 2020

16:00 - 16:45
Virtual

Learning with Signatures: embedding and truncation order selection

Adeline Fermanian
(Sorbonne Université)
Further Information
Abstract

Abstract: Sequential and temporal data arise in many fields of research, such as quantitative finance, medicine, or computer vision. We will be concerned with a novel approach for sequential learning, called the signature method, and rooted in rough path theory. Its basic principle is to represent multidimensional paths by a graded feature set of their iterated integrals, called the signature. On the one hand, this approach relies critically on an embedding principle, which consists in representing discretely sampled data as paths, i.e., functions from [0,1] to R^d. We investigate the influence of embeddings on prediction accuracy with an in-depth study of three recent and challenging datasets. We show that a specific embedding, called lead-lag, is systematically better, whatever the dataset or algorithm used. On the other hand, in order to combine signatures with machine learning algorithms, it is necessary to truncate these infinite series. Therefore, we define an estimator of the truncation order and prove its convergence in the expected signature model.

Thu, 30 Apr 2020
11:30

Fields of finite dp-rank

Will Johnson
(Fudan University)
Abstract

The classification of NIP fields is a major open problem in model theory.  This talk will be an overview of an ongoing attempt to classify NIP fields of finite dp-rank.  Let $K$ be an NIP field that is neither finite nor separably closed.  Conjecturally, $K$ admits exactly one definable, valuation-type field topology (V-topology).  By work of Anscombe, Halevi, Hasson, Jahnke, and others, this conjecture implies a full classification of NIP fields.  We will sketch how this technique was used to classify fields of dp-rank 1, and what goes wrong in higher ranks.  At present, there are two main results generalizing the rank 1 case.  First, if $K$ is an NIP field of positive characteristic (and any rank), then $K$ admits at most one definable V-topology.  Second, if $K$ is an unstable NIP field of finite dp-rank (and any characteristic), then $K$ admits at least one definable V-topology.  These statements combine to yield the classification of positive characteristic fields of finite dp-rank. In characteristic 0, things go awry in a surprising way, and it becomes necessary to study a new class of "finite rank" field topologies, generalizing V-topologies.  The talk will include background information on V-topologies, NIP fields, and dp-rank.

Tue, 28 Apr 2020
15:30
Virtual

Percolation on triangulations, and a bijective path to Liouville quantum gravity

Olivier Bernardi
(Brandeis)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss the percolation model on planar triangulations, and present a bijection that is key to relating this model to some fundamental probabilistic objects. I will attempt to achieve several goals:
1. Present the site-percolation model on random planar triangulations.
2. Provide an informal introduction to several probabilistic objects: the Gaussian free field, Schramm-Loewner evolutions, and the Brownian map.
3. Present a bijective encoding of percolated triangulations by certain lattice paths, and explain its role in establishing exact relations between the above-mentioned objects.
This is joint work with Nina Holden, and Xin Sun.

Tue, 28 Apr 2020
14:00
Virtual

The breadth-first construction of scaling limits of graphs with finite excess

Gregory Miermont
(ENS Lyon)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Random graphs with finite excess appear naturally in at least two different settings: random graphs in the critical window (aka critical percolation on regular and other classes of graphs), and unicellular maps of fixed genus. In the first situation, the scaling limit of such random graphs was obtained by Addario-Berry, Broutin and Goldschmidt based on a depth-first exploration of the graph and on the coding of the resulting forest by random walks. This idea originated in Aldous' work on the critical random graph, using instead a breadth-first search approach that seem less adapted to taking graph scaling limits. We show hat this can be done nevertheless, resulting in some new identities for quantities like the radius and the two-point function of the scaling limit. We also obtain a similar "breadth-first" construction of the scaling limit of unicellular maps of fixed genus. This is based on joint work with Sanchayan Sen.

Tue, 28 Apr 2020

12:00 - 13:00
C1

Atomic structures and the statistical mechanics of networks

Anatol Wegner
(University College London)
Abstract

We consider random graph models where graphs are generated by connecting not only pairs of nodes by edges but also larger subsets of
nodes by copies of small atomic subgraphs of arbitrary topology. More specifically we consider canonical and microcanonical ensembles
corresponding to constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such
models. We also introduce a procedure that enables the distributions of multiple atomic subgraphs to be combined resulting in more coarse
grained models. As a result we obtain a general class of models that can be parametrized in terms of basic building blocks and their
distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs (Karrer & Newman PRE 2010, Bollobas et al. RSA 2011), random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy expressions for all these models can be derived from a single expression that is characterized by the symmetry groups of their atomic subgraphs.

Mon, 27 Apr 2020
15:45
Virtual

On homological stability for configuration-section spaces

Martin Palmer
(IMAR)
Abstract

For a bundle E over a manifold M, the associated "configuration-section spaces" are spaces of configurations of points in M together with a section of E over the complement of the configuration. One often considers subspaces where the behaviour of the section near a configuration point -- a kind of "monodromy" -- is restricted or prescribed. These are examples of "non-local configuration spaces", and may be interpreted physically as moduli spaces of "fields with prescribed singularities" in an ambient manifold.

An important class of examples is given by Hurwitz spaces, which are moduli spaces of branched G-coverings of the 2-disc, and which are homotopy equivalent to certain configuration-section spaces on the 2-disc. Ellenberg, Venkatesh and Westerland proved that, under certain conditions, Hurwitz spaces are (rationally) homologically stable; from this they then deduced an asymptotic version of the Cohen-Lenstra conjecture for function fields, a purely number-theoretical result.

We will discuss another homological stability result for configuration-section spaces, which holds (with integral coefficients) whenever the base manifold M is connected and open. We will also show that the "stabilisation maps" are split-injective (in all degrees) whenever dim(M) is at least 3 and M is either simply-connected or its handle dimension is at most dim(M) - 2.

This represents joint work with Ulrike Tillmann.

Mon, 27 Apr 2020
15:00

Decomposition of 2d theories with 1-form symmetries

Eric Sharpe -- ZOOM SEMINAR
(Virginia Tech)
Abstract

In this talk, we will discuss two-dimensional theories with discrete

one-form symmetries, examples (which we have been studying

since 2005), their properties, and gauging of the one-form symmetry.

Their most important property is that such theories decompose into a

disjoint union of theories, recently deemed `universes.'

This decomposition has the effect of restricting allowed nonperturbative

sectors, in a fashion one might deem a `multiverse interference effect,'

which has had applications in topics including Gromov-Witten theory and

gauged linear sigma model phases.  After reviewing one-form symmetries

and decomposition in general, we will discuss a particular 

example in detail to explicitly illustrate these properties and 

to demonstrate how

gauging the one-form symmetry projects onto summands in the

decomposition.  If time permits, we will briefly review

analogous phenomena in four-dimensional theories with three-form symmetries,

as recently studied by Tanizaki and Unsal.

Mon, 27 Apr 2020
14:15
Virtual

Evanescent ergosurfaces and waves

Joe Keir
(Oxford)
Abstract

Certain exotic Lorentzian manifolds, including some of importance to string theory, possess an unusual geometric feature called an "evanescent ergosurface". In this talk I will introduce this feature and motivate the study of the wave equation on the associated geometries. It turns out that the presence of an evanescent ergosurface prevents the energy of waves from being uniformly bounded in terms of their initial energy; I will outline the proof of this statement. An immediate corollary is that there do not exist manifolds with both an evanescent ergosurface and a globally timelike Killing vector field.