Fri, 15 Nov 2024

11:00 - 12:00
L5

Lane formation and aggregation spots in foraging ant

Dr Maria Bruna
(Mathematical Institute University of Oxford)
Abstract

We consider a system of interacting particles as a model for a foraging ant colony, where each ant is represented as an active Brownian particle. The interactions among ants are mediated through chemotaxis, aligning their orientations with the upward gradient of a pheromone field. Unlike conventional models, our study introduces a parameter that enables the reproduction of two distinctive behaviours: the conventional Keller-Segel aggregation and the formation of travelling clusters without relying on external constraints such as food sources or nests. We consider the associated mean-field limit of this system and establish the analytical and numerical foundations for understanding these particle behaviours.

Thu, 14 Nov 2024

17:00 - 18:00
L3

The Borel monadic theory of order is decidable

Sven Manthe
(University of Bonn)
Abstract

The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.

Thu, 14 Nov 2024
16:00
C5

Quantum Non-local Games

Priyanga Ganesan
(UCSD)
Abstract

A non-local game involves two non-communicating players who cooperatively play to give winning pairs of answers to questions posed by an external referee. Non-local games provide a convenient framework for exhibiting quantum supremacy in accomplishing certain tasks and have become increasingly useful in quantum information theory, mathematics, computer science, and physics in recent years. Within mathematics, non-local games have deep connections with the field of operator algebras, group theory, graph theory, and combinatorics. In this talk, I will provide an introduction to the theory of non-local games and quantum correlation classes and show their connections to different branches of mathematics. We will discuss how entanglement-assisted strategies for non-local games may be interpreted and studied using tools from operator algebras, group theory, and combinatorics. I will then present a general framework of non-local games involving quantum questions and answers.

Thu, 14 Nov 2024
16:00
Lecture Room 3

An analytic formula for points on elliptic curves

Alan Lauder
(University of Oxford)
Abstract

Given an elliptic curve over the rationals, a natural problem is to find an explicit point of infinite order over a given number field when there is expected to be one. Geometric constructions are known in only two different settings. That of Heegner points, developed since the 1950s, which yields points over abelian extensions of imaginary quadratic fields. And that of Stark-Heegner points, from the late 1990s: here the points constructed are conjectured to be defined over abelian extensions of real quadratic fields. I will describe a new analytic formula which encompasses both of these, and conjecturally yields points in many other settings. This is joint work with Henri Darmon and Victor Rotger.

Thu, 14 Nov 2024
16:00
L4

Higher-order approximation of jump-diffusion McKean--Vlasov SDEs

Dr Verena Schwarz
(University of Klagenfurt)
Further Information

Please join us for refreshments outside the lecture room from 15:30.

 

Abstract

In this talk we study the numerical approximation of the jump-diffusion McKean--Vlasov SDEs with super-linearly growing drift, diffusion and jump-coefficient. In the first step, we derive the corresponding interacting particle system and define a Milstein-type approximation for this. Making use of the propagation of chaos result and investigating the error of the Milstein-type scheme we provide convergence results for the scheme. In a second step, we discuss potential simplifications of the numerical approximation scheme for the direct approximation of the jump-diffusion McKean--Vlasov SDE. Lastly, we present the results of our numerical simulations.

Thu, 14 Nov 2024

14:00 - 15:00
Lecture Room 3

Group discussion on the use of AI tools in research

Mike Giles
(Oxford University)
Abstract

AI tools like ChatGPT, Microsoft Copilot, GitHub Copilot, Claude and even older AI-enabled tools like Grammarly and MS Word, are becoming an everyday part of our research environment.  This last-minute opening up of a seminar slot due to the unfortunate illness of our intended speaker (who will hopefully re-schedule for next term) gives us an opportunity to discuss what this means for us as researchers; what are good helpful uses of AI, and are there uses of AI which we might view as inappropriate?  Please come ready to participate with examples of things which you have done yourselves with AI tools.

Thu, 14 Nov 2024
13:00
N3.12

JT Gravity as a Matrix Integral

Marta Bucca
Abstract
Jackiw-Teitelboim (JT) gravity is a two dimensional dilaton gravity system, which describes near extremal black holes. Its partition functions correspond to surfaces with n Schwarzian boundaries and arbitrary numbers of handles. The goal of this talk will be to show how to compute these partition functions by using a correspondence between the sum of handles and the genus expansion of a certain matrix integral.
 
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
Thu, 14 Nov 2024

12:00 - 12:30
Lecture Room 6

Structure-preserving discretisation for magneto-frictional equations in the Parker conjecture

Mingdong He
(University of Oxford)
Abstract

The Parker conjecture, which explores whether magnetic fields in perfectly conducting plasmas can develop tangential discontinuities during magnetic relaxation, remains an open question in astrophysics. Helicity conservation provides a topological barrier against topologically nontrivial initial data relaxing to a trivial solution. Preserving this mechanism is therefore crucial for numerical simulation.  

This paper presents an energy- and helicity-preserving finite element discretization for the magneto-frictional system for investigating the Parker conjecture. The algorithm enjoys a discrete version of the topological mechanism and a discrete Arnold inequality. 
We will also discuss extensions to domains with nontrivial topology.

This is joint work with Prof Patrick Farrell, Dr Kaibo Hu, and Boris Andrews

Wed, 13 Nov 2024
16:00
L6

The McCullough-Miller space for RAAGs

Peio Gale
(Public University of Navarre)
Abstract

The McCullough-Miller space is a contractible simplicial complex that admits an action of the pure symmetric (outer) automorphisms of the free group, with stabilizers that are free abelian. This space has been used to derive several cohomological properties of these groups, such as computing their cohomology ring and proving that they are duality groups. In this talk, we will generalize the construction to right-angled Artin groups (RAAGs), and use it to obtain some interesting cohomological results about the pure symmetric (outer) automorphisms of RAAGs.

Wed, 13 Nov 2024
11:00
L4

Flow equation approach for the stochastic Burgers equation

Andrea Pitrone
(Mathematical Institute)
Abstract

I will present the basic idea of the flow equation approach developed by Paweł Duch to study singular stochastic partial differential equations. In particular, I will show how it can be used to prove the existence of a solution of the stochastic Burgers equation on the one-dimensional torus.

Tue, 12 Nov 2024
17:00
L6

Subgroup Tests and the Aldous-Lyons conjecture

Michael Chapman
(NYU)
Abstract

The Aldous-Lyons conjecture from probability theory states that every (unimodular) infinite graph can be (Benjamini-Schramm) approximated by finite graphs. This conjecture is an analogue of other influential conjectures in mathematics concerning how well certain infinite objects can be approximated by finite ones; examples include Connes' embedding problem (CEP) in functional analysis and the soficity problem of Gromov-Weiss in group theory. These became major open problems in their respective fields, as many other long-standing open problems, that seem unrelated to any approximation property, were shown to be true for the class of finitely-approximated objects. For example, Gottschalk's conjecture and Kaplansky's direct finiteness conjecture are known to be true for sofic groups, but are still wide open for general groups.

In 2019, Ji, Natarajan, Vidick, Wright and Yuen resolved CEP in the negative. Quite remarkably, their result is deduced from complexity theory, and specifically from undecidability in certain quantum interactive proof systems. Inspired by their work, we suggest a novel interactive proof system which is related to the Aldous-Lyons conjecture in the following way: If the Aldous-Lyons conjecture was true, then every language in this interactive proof system is decidable. A key concept we introduce for this purpose is that of a Subgroup Test, which is our analogue of a Non-local Game. By providing a reduction from the Halting Problem to this new proof system, we refute the Aldous-Lyons conjecture.

This talk is based on joint work with Lewis Bowen, Alex Lubotzky, and Thomas Vidick.

No special background in probability theory or complexity theory will be assumed.

Tue, 12 Nov 2024
16:00
C3

Spectral gap in the operator on traces induced from a C*-correspondence

Jeremy Hume
(University of Glasgow)
Abstract

A C*-correspondence between two C*-algebras is a generalization of a *-homomorphism. Laca and Neshveyev showed that, like a *-homomorphism, there is an induced map between traces of the algebras. Given sufficient regularity conditions, the map defines a bounded operator between the spaces of (bounded) tracial linear functionals. 

This operator can be of independent interest - a special case of correspondence gives Ruelle's operator associated to a non-invertible discrete-time dynamical system, and the study of Ruelle's operator is the basis of his thermodynamic formalism. Moreover, by the work of Laca and Neshveyev, the operator's positive eigenvectors determine the KMS states of the gauge action on the Cuntz-Pimsner algebra of the correspondence.

Given a C*-correspondence from a C*-algebra to itself, we will present a sufficient condition on the C*-correspondence that implies the operator on traces has a unique positive eigenvector, and moreover a spectral gap. This result recovers the Perron-Frobenius theorem, aspects of Ruelle's thermodynamic formalism, and unique KMS state results for a variety of constructions of Cuntz-Pimsner algebras, including the C*-algebras associated to self-similar groupoids. The talk is based on work in progress.

Tue, 12 Nov 2024

14:00 - 15:00
L4

On forbidden configurations in point-line incidence graphs

Nora Frankl
(Open University)
Abstract

The celebrated Szemeredi-Trotter theorem states that the maximum number of incidences between $n$ points and $n$ lines in the plane is $\mathcal{O}(n^{4/3})$, which is asymptotically tight.

Solymosi conjectured that this bound drops to $o(n^{4/3})$ if we exclude subconfigurations isomorphic to any fixed point-line configuration. We describe a construction disproving this conjecture. On the other hand, we prove new upper bounds on the number of incidences for configurations that avoid certain subconfigurations. Joint work with Martin Balko.

Tue, 12 Nov 2024

14:00 - 15:00
C3

Blocks of modular representations of p-adic groups

Shaun Stevens
(UEA)
Abstract

Let G be the points of a reductive group over a p-adic field. According to Bernstein, the category of smooth complex representations of G decomposes as a product of indecomposable subcategories (blocks), each determined by inertial supercuspidal support. Moreover, each of these blocks is equivalent to the category of modules over a Hecke algebra, which is understood in many (most) cases. However, when the coefficients of the representations are now allowed to be in a more general ring (in which p is invertible), much of this fails in general. I will survey some of what is known, and not known.

Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by Postgraduates

Abstract

Come along to hear from several PhD students and PostDocs about their research. There will also be a Q&A about doing a Master's/PhD and a chance to mingle with postgraduate students. 

Speakers include:

  • Shaked Bader, DPhil Student in Geometric Group Theory, 
  • Eoin Hurley, PostDoc in Combinatorics, 
  • Patricia Lamirande, DPhil Student in Mathematical Biology
Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by PhD Students

Abstract

Several PhD students from the department will give short 5 minute talks on their research. This is also targeted at undergraduates interested in doing PhDs .

Tue, 12 Nov 2024
13:00
L6

Randomised Quantum Circuits for Practical Quantum Advantage

Bálint Koczor
(Mathematical Institute (University of Oxford))
Abstract

Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
 
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.

 

Tue, 12 Nov 2024
13:00
L2

Machine Learning and Calabi-Yau Manifolds

Magdalena Larfors
(Uppsala)
Abstract

: With motivation from string compactifications, I will present work on the use of machine learning methods for the computation of geometric and topological properties of Calabi-Yau manifolds.

Mon, 11 Nov 2024
17:00
L1

The Brooke Benjamin Lecture in Fluid Dynamics: The Elusive Singularity

Professor Peter Constantin
(Princeton University)
Abstract

The Seventeenth Brooke Benjamin Lecture 2024

The Elusive Singularity

I will describe the open problems of singularity formation in incompressible fluids. I will discuss a list of related models, some results, and some more open problems.

Date: Monday, 11 November 2024 

Time: 5pm GMT

Location: Lecture Theatre 1, Mathematical Institute 

Speaker: Professor Peter Constantin        

More information about The Brooke Benjamin Lecture.

Mon, 11 Nov 2024
17:00
L1

The Seventeenth Brooke Benjamin Lecture 2024: The Elusive Singularity

Professor Peter Constantin
(Princeton University)
Abstract

The Elusive Singularity

I will describe the open problems of singularity formation in incompressible fluids. I will discuss a list of related models, some results, and some more open problems.

Date: Monday, 11 November 2024 

Time: 5pm GMT

Location: Lecture Theatre 1, Mathematical Institute 

Speaker: Professor Peter Constantin            

Peter Constantin is the John von Neumann Professor of Mathematics and Applied and Computational Mathematics at Princeton University. Peter Constantin received his B.A and M.A. summa cum laude from the University of Bucharest, Faculty of Mathematics and Mechanics. He obtained his Ph.D. from The Hebrew University of Jerusalem under the direction of Shmuel Agmon.

Constantin’s work is focused on the analysis of PDE and nonlocal models arising in statistical and nonlinear physics. Constantin worked on scattering for Schr¨odinger operators, on finite dimensional aspects of the dynamics of Navier-Stokes equations, on blow up for models of Euler equations. He introduced active scalars, and, with Jean-Claude Saut, local smoothing for general dispersive PDE. Constantin worked on singularity formation in fluid interfaces, on turbulence shell models, on upper bounds for turbulent transport, on the inviscid limit, on stochastic representation of Navier-Stokes equations, on the Onsager conjecture. He worked on critical nonlocal dissipative equations, on complex fluids, and on ionic diffusion in fluids.

Constantin has advised thirteen graduate students in mathematics, and served in the committee of seven graduate students in physics. He mentored twenty-five postdoctoral associates. 

Constantin served as Chair of the Mathematics Department of the University of Chicago and as the Director of the Program in Applied and Computational Mathematics at Princeton University.

Constantin is a Fellow of the Institute of Physics, a SIAM Fellow, and Inaugural Fellow of the American Mathematical Society, a Fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences

Mon, 11 Nov 2024
15:30
L5

Two-generator subgroups of free-by-cyclic groups

Edgar Bering
(San José State University)
Abstract

In general, the classification of finitely generated subgroups of a given group is intractable. Restricting to two-generator subgroups in a geometric setting is an exception. For example, a two-generator subgroup of a right-angled Artin group is either free or free abelian. Jaco and Shalen proved that a two-generator subgroup of the fundamental group of an orientable atoroidal irreducible 3-manifold is either free, free-abelian, or finite-index. In this talk I will present recent work proving a similar classification theorem for two generator mapping-torus groups of free group endomorphisms: every two generator subgroup is either free or conjugate to a sub-mapping-torus group. As an application we obtain an analog of the Jaco-Shalen result for free-by-cyclic groups with fully irreducible atoroidal monodromy. While the statement is algebraic, the proof technique uses the topology of finite graphs, a la Stallings. This is joint work with Naomi Andrew, Ilya Kapovich, and Stefano Vidussi.
 

Mon, 11 Nov 2024
14:15
L4

Derived Spin structures and moduli of sheaves on Calabi-Yau fourfolds

Nikolas Kuhn
(Oxford)
Abstract

I will present a notion of spin structure on a perfect complex in characteristic zero, generalizing the classical notion for an (algebraic) vector bundle. For a complex $E$ on $X$ with an oriented quadratic structure one obtains an associated ${\mathbb Z}/2{\mathbb Z}$-gerbe over X which obstructs the existence of a spin structure on $E$. This situation arises naturally on moduli spaces of coherent sheaves on Calabi-Yau fourfolds. Using spin structures as orientation data, we construct a categorical refinement of a K-theory class constructed by Oh-Thomas on such moduli spaces.

Mon, 11 Nov 2024

14:00 - 15:00
Lecture Room 3

Understanding the learning dynamics of self-predictive representation learning

Yunhao Tang
(Google Deep Mind)
Abstract

Self-predictive learning (aka non-contrastive learning) has become an increasingly important paradigm for representation learning. Self-predictive learning is simple yet effective: it learns without contrastive examples yet extracts useful representations through a self-predicitve objective. A common myth with self-predictive learning is that the optimization objective itself yields trivial representations as globally optimal solutions, yet practical implementations can produce meaningful solutions. 

 

We reconcile the theory-practice gap by studying the learning dynamics of self-predictive learning. Our analysis is based on analyzing a non-linear ODE system that sheds light on why despite a seemingly problematic optimization objective, self-predictive learning does not collapse, which echoes with important implementation "tricks" in practice. Our results also show that in a linear setup, self-predictive learning can be understood as gradient based PCA or SVD on the data matrix, hinting at meaningful representations to be captured through the learning process.

 

This talk is based on our ICML 2023 paper "Understanding self-predictive learning for reinforcement learning".