Square functions and random sums and their role in the analysis of Banach spaces
Abstract
This is part of a meeting of the North British Functional Analysis Seminar.
In this talk I will present an overview on generalized square functions in Banach spaces and some of their recent uses in “Analysis in Banach Spaces”. I will introduce the notions of $R$-boundedness and $\gamma$-radonifying operators and discuss their origins and some of their applications to harmonic analysis, functional calculus, control theory, and stochastic analysis.
Optimal rates of decay for semigroups on Hilbert spaces
Abstract
This talk is associated with the NBFAS meeting.
We discuss the quantitative asymptotic behaviour of operator semigroups. Batty and Duyckaerts obtained upper and lower bounds on the rate of decay of a semigroup given bounds on the resolvent growth of the semigroup generator. They conjectured that in the Hilbert space setting and for the special case of polynomial resolvent growth it is possible to improve the upper bound so as to yield the exact rate of decay up to constants. This conjecture was proved to be correct by Borichev and Tomilov, and the conclusion was extended by Batty, Chill and Tomilov to certain cases in which the resolvent growth is not exactly polynomial but almost. In this talk we extend their result by showing that one can improve the upper bound under a significantly milder assumption on the resolvent growth. This result is optimal in a certain sense. We also discuss how this improved result can be used to obtain sharper estimates on the rate of energy decay for a wave equation subject to viscoelastic damping at the boundary. The talk is based on joint work with J. Rozendaal and R. Stahn.
Shimura varieties at level Gamma_1(p^{\infty}) and Galois representations
Abstract
Let F be a totally real or CM number field. Scholze has constructed Galois representations associated with torsion classes in the cohomology of locally symmetric spaces for GL_n(F). We show that the nilpotent ideal appearing in Scholze's construction can be removed when F splits completely at the relevant prime. As a key component of the proof, we show that the compactly supported cohomology of certain unitary and symplectic Shimura varieties with level Gamma_1(p^{\infty}) vanishes above the middle degree. This is joint work with Ana Caraiani, Chi-Yun Hsu, Christian Johansson, Lucia Mocz, Emanuel Reinecke, and Sheng-Chi Shih.
Ion migration in perovskite solar cells
Abstract
J. M. Foster 1 , N. E. Courtier 2 , S. E. J. O’Kane 3 , J. M. Cave 3 , R. Niemann 4 , N. Phung 5 , A. Abate 5 , P. J. Cameron 4 , A. B. Walker 3 & G. Richardson 2 .
1 School of Mathematics & Physics, University of Portsmouth, UK. {@email}
2 School of Mathematics, University of Southampton, UK.
3 School of Physics, University of Bath, UK.
4 School of Chemistry, University of Bath, UK.
5 Helmholtz-Zentrum Berlin, Germany.
Metal halide perovskite has emerged as a highly promising photovoltaic material. Perovskite-based solar cells now exhibit power conversion efficiencies exceeding 22%; higher than that of market-leading multi-crystalline silicon, and comparable to the Shockley-Queisser limit of around 33% (the maximum obtainable efficiency for a single junction solar cell). In addition to fast electronic phenomena, occurring on timescales of nanoseconds, they also exhibit much slower dynamics on the timescales of several seconds and up to a day. One well-documented example of this is the ‘anomalous’ hysteresis observed in current-voltage scans where the applied voltage is varied whilst the output current is measured. There is now a consensus that this is caused by the motion of ions in the perovskite material affecting the internal electric field and in turn the electronic transport.
We will discuss the formulation of a drift-diffusion model for the coupled electronic and ionic transport in a perovskite solar cell as well as its systematic simplification via the method of matched asymptotic expansions. We will use the resulting reduced model to give a cogent explanation for some experimental observations including, (i) the apparent disappearance of current-voltage hysteresis for certain device architectures, and (ii) the slow fading of performance under illumination during the day and subsequent recovery in the dark overnight. Finally, we suggest ways in which materials and geometry can be chosen to reduce charge carrier recombination and improve device performance.
Potential operators, analyticity and bounded holomorphic functional calculus for the Stokes operator
Abstract
This is part of a meeting of the North British Functional Aanlysis Seminar. There will be a tea break (15:30-16:00)
In a first talk, I shall recall the basic definitions and properties of ${\mathcal{H}}^\infty}$ functional calculus. I shall show how a second order problem can be reduced to a first order system and how to construct potential operators.
In a second talk, we will see how to use potential operators for the specific problem of the Stokes operator with the so-called “natural” boundary conditions in non smooth domains.
Most parts which will be presented are taken from a joint work with Alan McIntosh (to be published soon in the journal "Revista Matematica Iberoamericana”)
Higher order partial differential equation constrained derivative information using automated code generation
Abstract
The FEniCS system [1] allows the description of finite element discretisations of partial differential equations using a high-level syntax, and the automated conversion of these representations to working code via automated code generation. In previous work described in [2] the high-level representation is processed automatically to derive discrete tangent-linear and adjoint models. The processing of the model code at a high level eases the technical difficulty associated with management of data in adjoint calculations, allowing the use of optimal data management strategies [3].
This previous methodology is extended to enable the calculation of higher order partial differential equation constrained derivative information. The key additional step is to treat tangent-linear
equations on an equal footing with originating forward equations, and in particular to treat these in a manner which can themselves be further processed to enable the derivation of associated adjoint information, and the derivation of higher order tangent-linear equations, to arbitrary order. This enables the calculation of higher order derivative information -- specifically the contraction of a Kth order derivative against (K - 1) directions -- while still making use of optimal data management strategies. Specific applications making use of Hessian information associated with models written using the FEniCS system are presented.
[1] "Automated solution of differential equations by the finite element method: The FEniCS book", A. Logg, K.-A. Mardal, and G. N. Wells (editors), Springer, 2012
[2] P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes, "Automated derivation of the adjoint of high-level transient finite element programs", SIAM Journal on Scientific Computing 35(4), C369--C393, 2013
[3] A. Griewank, and A. Walther, "Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation", ACM Transactions on Mathematical Software 26(1), 19--45, 2000
From AlphaGo to AlphaTrader: A Deep learning approach to analyse trading behaviour
North British Functional Analysis Seminar on this day
Abstract
For the North Analysis British Seminar, see: https://www.maths.ox.ac.uk/node/29687
16:00
An Introduction to Seifert Fibred Spaces
Abstract
A core problem in the study of manifolds and their topology is that of telling them apart. That is, when can we say whether or not two manifolds are homeomorphic? In two dimensions, the situation is simple, the Classification Theorem for Surfaces allows us to differentiate between any two closed surfaces. In three dimensions, the problem is a lot harder, as the century long search for a proof of the Poincaré Conjecture demonstrates, and is still an active area of study today.
As an early pioneer in the area of 3-manifolds Seifert carved out his own corner of the landscape instead of attempting to tackle the entire problem. By reducing his scope to the subclass of 3-manifolds which are today known as Seifert fibred spaces, Seifert was able to use our knowledge of 2-manifolds and produce a classification theorem of his own.
In this talk I will define Seifert fibred spaces, explain what makes them so much easier to understand than the rest of the pack, and give some insight on why we still care about them today.
16:00
Non-Abelian Hodge Theory for curves
Abstract
The aim of this talk is to tell the story of Non-Abelian Hodge Theory for curves. The starting point is the space of representations of the fundamental group of a compact Riemann surface. This space can be endowed with the structure of a complex algebraic variety in three different ways, giving rise to three non-algebraically isomorphic moduli spaces called the Betti, de Rham and Dolbeault moduli spaces respectively.
After defining and outlining the construction of these three moduli spaces, I will describe the (non-algebraic) correspondences between them, collectively known as Non-Abelian Hodge Theory. Finally, we will see how the rich structure of the Dolbeault moduli space can be used to shed light on the topology of the space of representations.
11:00
Linear and Cyclic Antimetrics
Abstract
The core idea behind metric spaces is the triangular inequality. Metrics have been generalized in many ways, but the most tempting way to alter them would be to "flip" the triangular inequality, obtaining an "anti-metric". This, however, only allows for trivial spaces where the distance between any two points is 0. However, if we intertwine the concept of antimetrics with the structures of partial linear--and cyclic--orders, we can define a structure where the anti-triangular inequality holds conditionally. We define this structure, give examples, and show an interesting result involving metrics and antimetrics.
Oxford Mathematics London Public Lecture: 'To a physicist I am a mathematician; to a mathematician, a physicist' - Roger Penrose in conversation with Hannah Fry SOLD OUT
Abstract
Roger Penrose is the ultimate scientific all-rounder. He started out in algebraic geometry but within a few years had laid the foundations of the modern theory of black holes with his celebrated paper on gravitational collapse. His exploration of foundational questions in relativistic quantum field theory and quantum gravity, based on his twistor theory, had a huge impact on differential geometry. His work has influenced both scientists and artists, notably Dutch graphic artist M. C. Escher.
Roger Penrose is one of the great ambassadors for science. In this lecture and in conversation with mathematician and broadcaster Hannah Fry he will talk about work and career.
This lecture is in partnership with the Science Museum in London where it will take place. Please email @email to register.
You can also watch online:
https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/Penrose-Fry
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
16:00
On a question of Babai and Sós, a nonstandard approach.
Abstract
In 1985, Babai and Sós asked whether there exists a constant c>0 such that every finite group of order n has a product-free set of size at least cn, where a product-free set of a group is a subset that does not contain three elements x,y and z satisfying xy=z. Gowers showed that the answer is no in the early 2000s, by linking the existence of product-free sets of large density to the existence of low dimensional unitary representations.
In this talk, I will provide an answer to the aforementioned question by model theoretic means. Furthermore, I will relate some of Gowers' results to the existence of nontrivial definable compactifications of nonstandard finite groups.
Bogomolov type inequality for Fano varieties with Picard number 1
Abstract
I will talk about some basic facts about slope stable sheaves and the Bogomolov inequality. New techniques from stability conditions will imply new stronger bounds on Chern characters of stable sheaves on some special varieties, including Fano varieties, quintic threefolds and etc. I will discuss the progress in this direction and some related open problems.
15:30
Pure spinor description of maximally supersymmetric gauge theories
Abstract
Using non-minimal pure spinor superspace, Cederwall has constructed BRST-invariant actions for D=10 super-Born-Infeld and D=11 supergravity which are quartic in the superfields. But since the superfields have explicit dependence on the non-minimal pure spinor variables, it is non-trivial to show these actions correctly describe super-Born-Infeld and supergravity. In this talk, I will expand solutions to the equations of motion from the pure spinor action for D=10 abelian super Born-Infeld to leading order around the linearized solutions and show that they correctly describe the interactions expected. If I have time, I will explain how to generalize these ideas to D=11 supergravity.
14:30
Long monotone paths in edge-ordered graphs
Abstract
How long a monotone path can one always find in any edge-ordering of the complete graph $K_n$? This appealing question was first asked by Chvatal and Komlos in 1971, and has since attracted the attention of many researchers, inspiring a variety of related problems. The prevailing conjecture is that one can always find a monotone path of linear length, but until now the best known lower bound was $n^{2/3−o(1)}$, which was proved by Milans. This talk will be
about nearly closing this gap, proving that any edge-ordering of the complete graph contains a monotone path of length $n^{1−o(1)}$. This is joint work with Bucic, Kwan, Sudakov, Tran, and Wagner.
Optimal complexity Navier-Stokes simulations in the ball
Abstract
In the first part of this talk, I will present an extension of Chebfun, called Ballfun, for computing with functions and vectors in the unit ball. I will then describe an algorithm for solving the incompressible Navier-Stokes equations in the ball. Contrary to projection methods, we use the poloidal-toroidal decomposition to decouple the PDEs and solve scalars equations. The solver has an optimal complexity (up to polylogarithmic terms) in terms of the degrees of freedom required to represent the solution.
14:15
Representation theoretic Dirac operators
Abstract
I will explain how Dirac operators provide precious information about geometric and algebraic aspects of representations of real Lie groups. In particular, we obtain an explicit realisation of representations, leading terms in the asymptotics of characters and a precise connection with nilpotent orbits.
A crash-course on persistent homology
Abstract
This talk features a self-contained introduction to persistent homology, which is the main ingredient of topological data analysis.
Riding through glue: the aerodynamics of performance cycling
Abstract
As a rule of thumb, the dominant resistive force on a cyclist riding along a flat road at a speed above 10mph is aerodynamic drag; at higher speeds, this drag becomes even more influential because of its non-linear dependence on speed. Reducing drag, therefore, is of critical importance in bicycle racing, where winning margins are frequently less than a tyre's width (over a 200+km race!). I shall discuss a mathematical model of aerodynamic drag in cycling, present mathematical reasoning behind some of the decisions made by racing cyclists when attempting to minimise it, and touch upon some of the many methods of aerodynamic drag assessment.
12:00
Loop Quantum Gravity and the Continuum
Abstract
One of the main open problems in loop quantum gravity is to reconcile the fundamental quantum discreteness of space with general relativity in the continuum. In this talk, I present recent progress regarding this issue: I will explain, in particular, how the discrete spectra of geometric observables that we find in loop gravity can be understood from a conventional Fock quantisation of gravitational edge modes on a null surface boundary. On a technical level, these boundary modes are found by considering a quasi-local Hamiltonian analysis, where general relativity is treated as a Hamiltonian system in domains with inner null boundaries. The presence of such null boundaries requires then additional boundary terms in the action. Using Ashtekar’s original SL(2,C) self-dual variables, I will explain that the natural such boundary term is nothing but a kinetic term for a spinor (defining the null flag of the boundary) and a spinor-valued two-form, which are both intrinsic to the boundary. The simplest observable on the boundary phase space is the cross sectional area two-form, which generates dilatations of the boundary spinors. In quantum theory, the corresponding area operator turns into the difference of two number operators. The area spectrum is discrete without ever introducing spin networks or triangulations of space. I will also comment on a similar construction in three euclidean spacetime dimensions, where the discreteness of length follows from the quantisation of gravitational edge modes on a one-dimensional cross section of the boundary.
The talk is based on my recent papers: arXiv:1804.08643 and arXiv:1706.00479.
Binary Matrix Completion for Bioactivity Prediction
Abstract
Matrix completion is an area of great mathematical interest and has numerous applications, including recommender systems for e-commerce. The recommender problem can be viewed as follows: given a database where rows are users and and columns are products, with entries indicating user preferences, fill in the entries so as to be able to recommend new products based on the preferences of other users. Viewing the interactions between user and product as links in a bipartite graph, the problem is equivalent to approximating a partially observed graph using clusters. We propose a divide and conquer algorithm inspired by the work of [1], who use recursive rank-1 approximation. We make the case for using an LP rank-1 approximation, similar to that of [2] by a showing that it guarantees a 2-approximation to the optimal, even in the case of missing data. We explore our algorithm's performance for different test cases.
[1] Shen, B.H., Ji, S. and Ye, J., 2009, June. Mining discrete patterns via binary matrix factorization. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 757-766). ACM.
[2] Koyutürk, M. and Grama, A., 2003, August. PROXIMUS: a framework for analyzing very high dimensional discrete-attributed datasets. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 147-156). ACM.