Tue, 21 Nov 2017

16:00 - 17:00
L5

Distal Shelah Expansions

Lotte Kestner
(Imperial College)
Abstract

 

(Joint with Gareth Boxall) In this talk I will introduce some properties of distal theories. I will remark that distality is preserved neither under reducts nor expansions of the language. I will then go on to discuss a recent result that the Shelah expansion of a theory is distal if and only if the theory itself is distal. 

Tue, 21 Nov 2017

15:45 - 16:45
L4

Mirror symmetry, mixed motives and zeta(3)

Wenzhe Yang
(University of Oxford)
Abstract

In mirror symmetry, the prepotential on the Kahler side has an expansion, the constant term of which is a rational multiple of zeta(3)/(2 pi i)^3 after an integral symplectic transformation. In this talk I will explain the connection between this constant term and the period of a mixed Hodge-Tate structure constructed from the limit MHS at large complex structure limit on the complex side. From Ayoub’s works on nearby cycle functor, there exists an object of Voevodsky’s category of mixed motives such that the mixed Hodge-Tate structure is expected to be a direct summand of the third cohomology of its Hodge realisation. I will present the connections between this constant term and conjecture about how mixed Tate motives sit inside Voevodsky’s category, which will also provide a motivic interpretation to the occurrence of zeta(3) in prepotential. 

Tue, 21 Nov 2017

14:30 - 15:00
L5

The Cascading Haar Wavelet algorithm for computing the Walsh-Hadamard Transform

Andrew Thompson
(University of Oxford)
Abstract

I will describe a novel algorithm for computing the Walsh Hadamard Transform (WHT) which consists entirely of Haar wavelet transforms. The algorithm shares precisely the same serial complexity as the popular divide-and-conquer algorithm for the WHT. There is also a natural way to parallelize the algorithm which appears to have a number of attractive features.

Tue, 21 Nov 2017
14:30
L6

Polynomail Expansion

Zdenek Dvorak
(Charles University)
Abstract

A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.

Tue, 21 Nov 2017

14:00 - 14:30
L5

Compressed Sensing Reconstruction of Dynamic X-ray Imaging

Joseph Field
(University of Oxford)
Abstract

Medical imaging is a key diagnostic tool, and is paramount for disease detection and for patient monitoring during ongoing care. Often, to reduce the amount of radiation that a patient is subjected to, there is a strong incentive to consider image reconstruction from incomplete sets of measurements, and so the imaging process is formulated as a compressed sensing problem.

In this talk, we will focus on compressed sensing for digital tomosynthesis (DTS), in which three-dimensional images are reconstructed from a set of two-dimensional X-ray projections. We first discuss a reconstruction approach for static bodies, with a particular interest in the choice of basis for the image representation. We will then focus on the need for accurate image reconstructions when the body of interest is not stationary, but is undergoing simple motion, discussing two different approaches for tackling this dynamic problem.

Tue, 21 Nov 2017

12:00 - 13:00
C3

Complex Contagions with Timers

Se-Wook Oh
(University of Oxford)
Abstract

A great deal of effort has gone into trying to model social influence --- including the spread of behavior, norms, and ideas --- on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays the adoption --- i.e., change of state --- of each agent, which in turn delays the adoptions of its neighbors. With a homogeneous-distributed timer, in which all nodes exhibit the same amount of delay, adoption delays are also homogeneous, so the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation of the Watts threshold model, and we find good agreement with numerical computations. We also examine our new timer model on networks constructed from empirical data.

Link to arxiv paper: https://arxiv.org/abs/1706.04252

Tue, 21 Nov 2017
12:00
L4

Index Theory for Dirac Operators in Lorentzian Signature and Geometric Scattering

Alexander Strohmaier
(Leeds)
Abstract

I will review some classical results on geometric scattering
theory for linear hyperbolic evolution equations
on globally hyperbolic spacetimes and its relation to particle and charge
creation in QFT. I will then show that some index formulae for the
scattering matrix can be interpreted as a special case of the  Lorentzian
analog of the Atyiah-Patodi-Singer index theorem. I will also discuss a
local version of this theorem and its relation to anomalies in QFT.
(Joint work with C. Baer)

Mon, 20 Nov 2017
17:00
St Catherine's

Optimization in the Darkness of Uncertainty when you don't know what you don't know, and what you do know isn't much!

Professor Kate Smith-Miles
(University of Melbourne)
Abstract

Many industrial optimisation problems involve the challenging task of efficiently searching for optimal decisions from a huge set of possible combinations. The optimal solution is the one that best optimises a set of objectives or goals, such as maximising productivity while minimising costs. If we have a nice mathematical equation for how each objective depends on the decisions we make, then we can usually employ standard mathematical approaches, such as calculus, to find the optimal solution. But what do we do when we have no idea how our decisions affect the objectives, and thus no equations? What if all we have is a small set of experiments, where we have tried to measure the effect of some decisions? How do we make use of this limited information to try to find the best decisions?

This talk will present a common industrial optimisation problem, known as expensive black box optimisation, through a case study from the manufacturing sector. For problems like this, calculus can’t help, and trial and error is not an option! We will introduce some methods and tools for tackling expensive black-box optimisation. Finally, we will discuss new methodologies for assessing the strengths and weaknesses of optimisation methods, to ensure the right method is selected for the right problem.

Mon, 20 Nov 2017
15:45
L6

Stable diffeomorphism of 4-manifolds

Mark Powell
(Durham University)
Abstract

I will talk about the diffeomorphism classification of 4-manifolds up to 
connected sums with the complex projective plane, and how the resulting 
equivalence class of a manifold can be detected by algebraic topological 
invariants of the manifold.  I may also discuss related results when one 
takes connected sums with another favourite 4-manifold, S^2 x S^2, instead.

Mon, 20 Nov 2017

15:45 - 16:45
L3

Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model

ANDREY KORMILITZIN
(University of Oxford)
Abstract

Recurrent major mood episodes and subsyndromal mood instability cause substantial disability in patients with bipolar disorder. Early identification of mood episodes enabling timely mood stabilisation is an important clinical goal. The signature method is derived from stochastic analysis (rough paths theory) and has the ability to capture important properties of complex ordered time series data. To explore whether the onset of episodes of mania and depression can be identified using self-reported mood data.

Mon, 20 Nov 2017

14:45 - 15:45
L4

Analysis of a rotating two-component Bose-Einstein condensate

Etienne Sandier
(Université Paris 12 Val de Marne)
Abstract

In this joint work with Amandine Aftalion we study the minimisers of an energy functional in two-dimensions describing a rotating two-component condensate. This involves in particular separating a line-energy term and a vortex term which have different orders of magnitude, and requires new estimates for functionals of the Cahn-Hilliard (or Modica-Mortola) type.

Mon, 20 Nov 2017

14:15 - 15:15
L3

SLE and Rough Paths Theory

VLAD MARGARINT
(University of Oxford)
Abstract

In this talk, I am going to report on some on-going research at the interface between Rough Paths Theory and Schramm-Loewner evolutions (SLE). In this project, we try to adapt techniques from Rough Differential Equations to the study of the Loewner Differential Equation. The main ideas concern the restart of the backward Loewner differential equation from the singularity in the upper half plane. I am going to describe some general tools that we developed in the last months that lead to a better understanding of the dynamics in the closed upper half plane under the backward Loewner flow.
Joint work with Prof. Dmitry Belyaev and Prof. Terry Lyons

Mon, 20 Nov 2017

14:15 - 15:15
L5

In search of the extended Kac-Moody Lie algebra

Ben Davison
(University of Glasgow)
Abstract

Associated to a finite graph without loops is the Kac-Moody Lie algebra for the Cartan matrix whose off diagonal entries are (minus) the adjacency matrix for the graph.  Two famous conjectures of Kac, proved by Hausel, Letellier and Villegas, hint that there may be some larger cohomologically graded algebra associated to the graph (even if there are loops), providing "higher" Kac moody Lie algebras, or at least their positive halves.  Using work with Sven Meinhardt, I will give a geometric construction of the (full) Kac-Moody algebra for a general finite graph, using cohomological DT theory.  Along the way we'll see a proof of the positivity conjecture for the modified Kac polynomials of Bozec, Schiffmann and Vasserot counting various types of representations of quivers.

 

Fri, 17 Nov 2017

14:15 - 15:15
C3

Toward attaining turbulent dynamos in the laboratory

Vassillios Dallas
(University of Oxford)
Abstract

The existence of planetary and stellar magnetic fields is attributed to the dynamo instability, the mechanism by which a background turbulent flow spontaneously generates a magnetic field by the constructive refolding of magnetic field lines. Many efforts have been made by several experimental groups to reproduce the dynamo instability in the laboratory using liquid metals. However, so far, unconstrained dynamos driven by turbulent flows have not been achieved in the intrinsically low magnetic Prandtl number $P_m$ (i.e. $Pm = Rm/Re << 1$) laboratory experiments. In this seminar I will demonstrate that the critical magnetic Reynolds number $Rm_c$ for turbulent non-helical dynamos in the low $P_m$ limit can be significantly reduced if the flow is submitted to global rotation. Even for moderate rotation rates the required energy injection rate can be reduced by a factor more than 1000. Our finding thus points into a new paradigm for the design of new liquid metal dynamo experiments.

Fri, 17 Nov 2017

14:00 - 15:00
L3

Building accurate computer models with cardiac and pulmonary images

Professor Vicente Grau
(Dept of Engineering Science University of Oxford)
Abstract

Image use continues to increase in both biomedical sciences and clinical practice. State of the art acquisition techniques allow characterisation from subcellular to whole organ scale, providing quantitative information of structure and function. In the heart, for example, images acquired from a single modality (cardiac MRI) can characterise micro- and macrostructure, describe mechanical function and measure blood flow. In the lungs, new contrast agents can be used to visualise the flow of gas in free breathing subjects. This provides rich new sources of information as well as new challenges to extract data in a way that is useful to clinicians as well as computer modellers.
I will describe efforts in my group to use the latest advances in machine learning to analyse images, and explain how we are applying these to the development of accurate computer models of the heart.
 

Fri, 17 Nov 2017

13:00 - 14:00
L6

On pathwise pricing-hedging duality in continuous time

David Proemel
Abstract

We discuss pathwise pricing-hedging dualities in continuous time and on a frictionless market consisting of finitely many risky assets with continuous price trajectories.

Fri, 17 Nov 2017

10:00 - 11:00
L3

Call Routing Optimisation

Jonathan Welton
(Vodafone)
Abstract

The costs to Vodafone of calls terminating on other networks – especially fixed networks – are largely determined by the termination charges levied by other telecoms operators.  We interconnect to several other telecoms operators, who charge differently; within one interconnect operator, costs vary depending on which of their switching centres we deliver calls to, and what the terminating phone number is.  So, while these termination costs depend partly on factors that we cannot control (such as the number called, the call duration and the time of day), they are also influenced by some factors that we can control.  In particular, we can route calls within our network before handing them over from our network to the other telecoms operator; where this “handover” occurs has an impact on termination cost.  
Vodafone would like to develop a repeatable capability to determine call delivery cost efficiency and identify where network routing changes can be made to improve matters, and determine traffic growth forecasts.

Thu, 16 Nov 2017
16:00
C5

The Einstein Equation on Manifolds with Large Symmetry Groups

Timothy Buttsworth
(The University of Queensland)
Abstract

In this talk I will discuss the problem of finding Einstein metrics in the homogeneous and cohomogeneity one setting. 
In particular, I will describe a recent result concerning existence of solutions to the Dirichlet problem for cohomogeneity one Einstein metrics.

Thu, 16 Nov 2017

16:00 - 17:30
L3

Multiscale simulation of slow-fast high-dimensional stochastic processes: methods and applications

Giovanni Samaey
(UNIVERSITY OF LEUVEN)
Abstract

We present a framework for the design, analysis and application of computational multiscale methods for slow-fast high-dimensional stochastic processes. We call these processes "microscopic'', and assume existence of an approximate "macroscopic'' model that captures the slow behaviour of a selected set of macroscopic state variables. The methodology combines short bursts of microscopic simulation with extrapolation at the macroscopic level. The methodology requires the careful study of a few key algorithmic ingredients. First, we need to properly initialise the microscopic system, based on a given macroscopic state and (possibly) a prior microscopic state that contains additional information about the system. Second, we need to control the variance of the noise that originates from the microscopic Monte Carlo simulation. Third, we need to analyse stability of the extrapolation step. We will discuss these aspects on two types of model problems -- scale-separated SDEs and kinetic equations -- and show the efficacity of the resulting methods in diverse applications, ranging from tumor growth to fusion energy.

Thu, 16 Nov 2017

16:00 - 17:30
L4

Optimal control of point processes with a Backward Stochastic Differential Equations approach

Fulvia Confortola
(Politecnico di Milano)
Abstract

We formulate and solve a class of Backward Stochastic Differential Equations (BSDEs) driven by the compensated random measure associated to a given marked point process on a general state space. We present basic well-posedness results in L 2 and in L 1 . We show that in the setting of point processes it is possible to solve the equation recursively, by replacing the BSDE by an ordinary differential equation in between jumps. Finally we address applications to optimal control of marked point processes, where the solution of a suitable BSDE allows to identify the value function and the optimal control. The talk is based on joint works with Marco Fuhrman and Jean Jacod. 

Thu, 16 Nov 2017

14:00 - 15:00
L4

New Formulations for Generator Maintenance Scheduling in Hydropower Systems

Professor Miguel Anjos
(École Polytechnique Montréal)
Abstract

Maintenance activities help prevent costly power generator breakdowns but because generators under maintenance are typically unavailable, the impact of maintenance schedules is significant and their cost must be accounted for when planning maintenance. In this paper we address the generator maintenance scheduling problem in hydropower systems. While this problem has been widely studied, specific operating conditions of hydroelectric systems have received less attention. We present a mixed-integer linear programming model that considers the time windows of the maintenance activities, as well as the nonlinearities and disjunctions of the hydroelectric production functions. Because the resulting model is hard to solve, we also propose an extended formulation, a set reduction approach that uses logical conditions for excluding unnecessary set elements from the model, and valid inequalities. Computational experiments using a variety of instances adapted from a real hydropower system in Canada support the conclusion that the extended formulation with set reduction achieves the best results in terms of computational time and optimality gap. This is joint work with Jesus Rodriguez, Pascal Cote and Guy Desaulniers.

Wed, 15 Nov 2017
11:00
N3.12

Outer Space

Sam Shepherd
Abstract

Outer Space is an important object in Geometric Group Theory and can be described from two viewpoints: as a space of marked graphs and a space of actions on trees. The latter viewpoint can be used to prove that Outer Space is contractible; and this fact together with some arguments using the first viewpoint enables us to say something about the Outer Automorphism group of a free group - I will sketch both these proofs.