Tue, 21 May 2024

14:00 - 15:00
C4

Fixation probability and suppressors of natural selection on higher-order networks

Naoki Masuda
(The State University of New York at Buffalo)
Abstract

Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.
 

Tue, 21 May 2024

14:00 - 15:00
L5

Spin link homology and webs in type B

Elijah Bodish
(MIT)
Abstract

In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.

This is based on joint work in progress with Ben Elias and David Rose.

Tue, 21 May 2024

14:00 - 14:30
L1

Goal-oriented adaptivity for stochastic collocation finite element methods

Thomas Round
(Birmingham University)
Abstract
Finite element methods are often used to compute approximations to solutions of problems involving partial differential equations (PDEs). More recently, various techniques involving finite element methods have been utilised to solve PDE problems with parametric or uncertain inputs. One such technique is the stochastic collocation finite element method, a sampling based approach which yields approximations that are represented by a finite series expansion in terms of a parameter-dependent polynomial basis.
 
In this talk we address the topic of goal-oriented strategies in the context of the stochastic collocation finite element method. These strategies are used to approximate quantities of interest associated with solutions to PDEs with parameter dependent inputs. We use existing ideas to estimate approximation errors for the corresponding primal and dual problems and utilise products of these estimates in an adaptive algorithm for approximating quantities of interest. We further demonstrate the utility of the proposed algorithm using numerical examples. These examples include problems involving affine and non-affine diffusion coefficients, as well as linear and non-linear quantities of interest.
Tue, 21 May 2024
13:00
L2

Scale and conformal invariance in 2-dimensional sigma models

George Papadopoulos
(King's College London)
Abstract

I shall review some aspects of the relationship between scale and conformal invariance in 2-dimensional sigma models.  Then, I shall explain how such an investigation is related to the Perelman's ideas of proving the Poincare' conjecture.  Using this, I shall demonstrate that scale invariant sigma models  with B-field coupling and  compact target space  are conformally invariant. Several examples will also be presented that elucidate the results.  The talk is based on the arXiv paper 2404.19526.

Tue, 21 May 2024
11:00
L5

Free probability, path developments and signature kernels as universal scaling limits

William Turner
(Imperial College, London)
Abstract

Scaling limits of random developments of a path into a matrix Lie Group have recently been used to construct signature-based kernels on path space, while mitigating some of the dimensionality challenges that come with using signatures directly. General linear group developments have been shown to be connected to the ordinary signature kernel (Muça Cirone et al.), while unitary developments have been used to construct a path characteristic function distance (Lou et al.). By leveraging the tools of random matrix theory and free probability theory, we are able to provide a unified treatment of the limits in both settings under general assumptions on the vector fields. For unitary developments, we show that the limiting kernel is given by the contraction of a signature against the monomials of freely independent semicircular random variables. Using the Schwinger-Dyson equations, we show that this kernel can be obtained by solving a novel quadratic functional equation. 

This is joint work with Thomas Cass.

Tue, 21 May 2024

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Mon, 20 May 2024
15:30
L5

Hyperbolic manifolds, maps to the circle, and fibring

Giovanni Italiano
((Oxford University))
Abstract

We will discuss the problem of finding hyperbolic manifolds fibring over the circle; and show a method to construct and analyse maps from particular hyperbolic manifolds to S^1, which relies on Bestvina-Brady Morse theory. 
This technique can be used to build and detect fibrations, algebraic fibrations, and Morse functions with minimal number of critical points, which are interesting in the even dimensional case. 
After an introduction to the problem, and presentation of the main results, we will use the remaining time to focus on some easy 3-dimensional examples, in order to explicitly show the construction at work.
 

Mon, 20 May 2024
15:30
L3

Multiscale analysis of wave propagation in random media

Prof Josselin Garnier
(Centre de Mathematiques Appliquees, Ecole polytechnique, Institut Polytechnique de Paris)
Further Information

This is a joint seminar with the Stochastic Analysis & Mathematical Finance seminar.

Mon, 20 May 2024
15:30
L3

Multiscale analysis of wave propagation in random media

Prof Josselin Garnier
(Centre de Mathematiques Appliquees, Ecole polytechnique, Institut Polytechnique de Paris)
Further Information

This is a joint seminar with OxPDE.

Abstract

In this talk we study wave propagation in random media using multiscale analysis.
We show that the wavefield can be described by a stochastic partial differential equation.
We can then address the following physical conjecture: for large propagation distances, the wavefield has Gaussian statistics, mean zero, and second-order moments determined by radiative transfer theory.
The results for the first two moments can be proved under general circumstances.
The Gaussian conjecture for the statistical distribution of the wavefield can be proved in some propagation regimes, but it turns out to be wrong in other regimes.

Mon, 20 May 2024

14:00 - 15:00
Lecture Room 3

Low rank approximation for faster optimization

Madeleine Udell
(Stanford University, USA)
Abstract

Low rank structure is pervasive in real-world datasets.

This talk shows how to accelerate the solution of fundamental computational problems, including eigenvalue decomposition, linear system solves, composite convex optimization, and stochastic optimization (including deep learning), by exploiting this low rank structure.

We present a simple method based on randomized numerical linear algebra for efficiently computing approximate top eigende compositions, which can be used to replace large matrices (such as Hessians and constraint matrices) with low rank surrogates that are faster to apply and invert.

The resulting solvers for linear systems (NystromPCG), composite convex optimization (NysADMM), and stochastic optimization (SketchySGD and PROMISE) demonstrate strong theoretical and numerical support, outperforming state-of-the-art methods in terms of speed and robustness to hyperparameters.

Fri, 17 May 2024

15:00 - 16:00
L5

Persistent Minimal Models in Rational Homotopy Theory

Kelly Spry Maggs
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract
One-parameter persistence and rational homotopy theory are two different ‘torsion-free’ algebraic models of space. Each enhances the cochain complex with additional algebraic structure— persistence equips cochain complexes with an action of a polynomial coefficient ring; rational homotopy theory equips cochains complexes with a graded-commutative product.
 
The persistent minimal model we introduce in this talk reconciles these two types of algebraic structures. Generalizing the classical case, we will describe how persistent minimal models are built by successively attaching the persistent rational homotopy groups into the persistent CDGA model. The attaching maps dualize to a new invariant called the persistent rational k-invariant.
 
This is joint work with Samuel Lavenir and Kathryn Hess: https://arxiv.org/abs/2312.08326


 

Fri, 17 May 2024

14:00 - 15:00
L3

Some consequences of phenotypic heterogeneity in living active matter

Dr Philip Pearce
(Dept of Mathematics UCL)
Abstract

In this talk I will discuss how phenotypic heterogeneity affects emergent pattern formation in living active matter with chemical communication between cells. In doing so, I will explore how the emergent dynamics of multicellular communities are qualitatively different in comparison to the dynamics of isolated or non-interacting cells. I will focus on two specific projects. First, I will show how genetic regulation of chemical communication affects motility-induced phase separation in cell populations. Second, I will demonstrate how chemotaxis along self-generated signal gradients affects cell populations undergoing 3D morphogenesis.

Fri, 17 May 2024

12:00 - 13:00
Quillen Room

Truncated current Lie algebras and their representation theory in positive characteristic.

Matthew Chaffe
(University of Birmingham)
Abstract

In this talk I will discuss the representation theory of truncated current Lie algebras in prime characteristic. I will first give an introduction to modular representation theory for general restricted Lie algebras and introduce the Kac-Weisfeiler conjectures. Then I will introduce a family of Lie algebras known as truncated current Lie algebras, and discuss their representation theory and its relationship with the representation theory of reductive Lie algebras in positive characteristic.

Thu, 16 May 2024
18:00
Stirling Square, London, SW1Y 5AD

Frontiers in Quantitative Finance Seminar: Turning tail risks into tail winds: using information geometry for portfolio optimisation

Julien Turc
(BNP Paribas)
Further Information

Registration for the talk is free but required.

Register here.

Abstract

A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).

Thu, 16 May 2024

17:00 - 18:00
L3

Some model theory of Quadratic Geometries

Charlotte Kestner
(Imperial College London)
Abstract
I will introduce the theories of orthogonal spaces and quadratic geometries over infinite fields, giving some background on Lie coordinatisable structures, and bilinear forms over infinite fields. I will then go on to explain the quantifier elimination for these structures, and discuss the axiomatisation of their pseudo-finite completions and model companions.  This is joint work in progress with Nick Ramsey.


 

Thu, 16 May 2024
16:00
L5

Ergodic Approach to the Mixing Conjecture

George Robinson
( Oxford)
Abstract

The Mixing Conjecture of Michel-Venkatesh has now taken on additional arithmetic significance via Wiles' new approach to modularity. Inspired by this, we present the best currently available method, pioneered by Khayutin's proof for quaternion algebras over the rationals, which we have successfully applied to totally real fields. The talk will overview the method, which brings a suprising combination of ergodic theory, analysis and geometry to bear on this arithmetic problem.

Thu, 16 May 2024
14:00
C3

Topological String Theory

Adam Kmec
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 16 May 2024

14:00 - 15:00
Lecture Room 3

Multilevel Monte Carlo methods for the approximation of failure probability regions

Matteo Croci
(Basque Center for Applied Mathematics)
Abstract

In this talk, we consider the problem of approximating failure regions. More specifically, given a costly computational model with random parameters and a failure condition, our objective is to determine the parameter region in which the failure condition is likely to not be satisfied. In mathematical terms, this problem can be cast as approximating the level set of a probability density function. We solve this problem by dividing it into two: 1) The design of an efficient Monte Carlo strategy for probability estimation. 2) The construction of an efficient algorithm for level-set approximation. Following this structure, this talk is comprised of two parts:

In the first part, we present a new multi-output multilevel best linear unbiased estimator (MLBLUE) for approximating expectations. The advantage of this estimator is in its convenience and optimality: Given any set of computational models with known covariance structure, MLBLUE automatically constructs a provenly optimal estimator for any (finite) number of quantities of interest. Nevertheless, the optimality of MLBLUE is tied to its optimal set-up, which requires the solution of a nonlinear optimization problem. We show how the latter can be reformulated as a semi-definite program and thus be solved reliably and efficiently.

In the second part, we construct an adaptive level-set approximation algorithm for smooth functions corrupted by noise in $\mathbb{R}^d$. This algorithm only requires point value data and is thus compatible with Monte Carlo estimators. The algorithm is comprised of a criterion for level-set adaptivity combined with an a posteriori error estimator. Under suitable assumptions, we can prove that our algorithm will correctly capture the target level set at the same cost complexity of uniformly approximating a $(d-1)$-dimensional function.

Thu, 16 May 2024

12:00 - 13:00
L3

Modelling liquid infiltration in a porous medium: perils of oversimplification

​Doireann O'Kiely
(University of Limerick)
Abstract

Mathematical modelling can support decontamination processes in a variety of ways.  In this talk, we focus on the contamination step: understanding how much of a chemical spill has seeped into the Earth or a building material, and how far it has travelled, are essential for making good decisions about how to clean it up.  

We consider an infiltration problem in which a chemical is poured on an initially unsaturated porous medium, and seeps into it via capillary action. Capillarity-driven flow through partially-saturated porous media is often modelled using Richards’ equation, which is a simplification of the Buckingham-Darcy equation in the limit where the infiltrating phase is much more viscous than the receding phase.  In this talk, I will explore the limitations of Richards equation, and discuss some scenarios in which predictions for small-but-finite viscosity ratios are very different to the Richards simplification.

Thu, 16 May 2024

11:00 - 12:00
C3

Basics of Globally Valued Fields and density of norms

Michał Szachniewicz
(University of Oxford)
Abstract

I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.

Wed, 15 May 2024

16:00 - 17:00
L6

Out(Fₙ) and friends

Naomi Andrew
(University of Oxford)
Abstract

This talk will serve as an introduction to the outer automorphism group of a free group, its properties and the objects used to study it: especially train track maps (with various adjectives) and Culler--Vogtmann outer space. If time allows I will discuss recent work joint with Hillen, Lyman and Pfaff on stretch factors in rank 3, but the goal of the talk will be to introduce the topic well rather than to speedrun towards the theorem.

Tue, 14 May 2024

16:00 - 17:00
C2

Non-isomorphic simple AH algebras with the same Elliott invariant and same radius of comparison

Ilan Hirshberg
(Ben-Gurion University of the Negev)
Abstract

Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.