Tue, 26 Jan 2016

14:15 - 15:30
L4

Extensions of modules for graded Hecke algebras

Kei Yuen Chan
(Amsterdam)
Abstract

Graded affine Hecke algebras were introduced by Lusztig for studying the representation theory of p-adic groups. In particular, some problems about extensions of representations of p-adic groups can be transferred to problems in the graded Hecke algebra setting. The study of extensions gives insight to the structure of various reducible modules. In this talk, I shall discuss some methods of computing Ext-groups for graded Hecke algebras.
The talk is based on arXiv:1410.1495, arXiv:1510.05410 and forthcoming work.

Tue, 26 Jan 2016

12:00 - 13:15
L4

Elliptic polylogarithms and string amplitudes

Dr Erik Panzer
(Oxford)
Abstract
Recent results showed that the low energy expansion of closed superstring amplitudes can be expressed in terms of

single-valued multiple elliptic polylogarithms. I will explain how these functions may be defined as iterated integrals on the torus and

sketch how they arise from Feynman integrals.
Mon, 25 Jan 2016
16:30
C1

Iterating the algebraic étale-Brauer obstruction

Francesca Balestrieri
(Oxford University)
Abstract

A question by Poonen asks whether iterating the étale-Brauer set can give a finer obstruction set. We tackle the algebraic version of Poonen's question and give, in many cases, a negative answer.

Mon, 25 Jan 2016

16:00 - 17:00
L4

Global well-posedness of the axisymmetric Navier-Stokes equations in the exterior of an infinite cylinder

Ken Abe
(Kyoto and Oxford)
Abstract
We consider the initial-boundary value problem of the Navier-Stokes equations for axisymmetric initial data with swirl in the exterior of an infinite cylinder, subject to the slip boundary condition. We construct global solutions and give an upper bound for azimuthal component of vorticity in terms of the size of cylinder. The proof is based on the Boussinesq system. We show that the system is globally well-posed for axisymmetric data without swirl.
Mon, 25 Jan 2016
15:45
L6

Minimal surfaces in 3-manifold topology

Dan Ketover
(Imperial College)
Abstract

I will explain some recent work using minimal surfaces to address problems in 3-manifold topology.  Given a Heegaard splitting, one can sweep out a three-manifold by surfaces isotopic to the splitting, and run the min-max procedure of Almgren-Pitts and Simon-Smith to construct a smooth embedded minimal surface.   If the original splitting were strongly irreducible (as introduced by Casson-Gordon), H. Rubinstein sketched an argument in the 80s showing that the limiting minimal surface should be isotopic to the original splitting.  I will explain some results in this direction and how jointly with T. Colding and D. Gabai we can use such min-max minimal surfaces to complete the classification problem for Heegaard splittings of non-Haken hyperbolic 3-manifolds.

Mon, 25 Jan 2016

15:45 - 16:45
L5

Higher order theory for renewal sequences with infinite mean.

Dalia Terhesiu
(Exeter University)
Abstract


First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order expansion for renewal sequences with infinite mean (not necessarily generated by independent processes) in the regime of slow regular variation (with small exponents).  I will also discuss some consequences of these results for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

 

Mon, 25 Jan 2016

14:15 - 15:45
L5

Propagation in a non-local reaction-diffusion equation

Christopher Henderson
(ENS Lyon)
Abstract

The first reaction-diffusion equation developed and studied is the Fisher-KPP equation.  Introduced in 1937, it accounts for the spatial spreading and growth of a species.  Understanding this population-dynamics model is equivalent to understanding the distribution of the maximum particle in a branching Brownian motion.  Various generalizations of this model have been studied in the eighty years since its introduction, including a model with non-local reaction for the cane toads of Australia introduced by Benichou et. al.  I will begin the talk by giving an extended introduction on the Fisher-KPP equation and the typical behavior of its solutions.  Afterwards, I will describe the model for the cane toads equations and give new results regarding this model.  In particular, I will show how the model may be viewed as a perturbation of a local equation using a new Harnack-type inequality and I will discuss the super-linear in time propagation of the toads.  The talk is based on a joint work with Bouin and Ryzhik.

 

---
 

Fri, 22 Jan 2016

16:00 - 17:00
L1

Scientific writing

Prof. Nick Trefethen
(Mathematical Institute, Oxford)
Abstract

Writing is a part of any career in science or mathematics. I will make some remarks about the role writing has played in my life and the role it might play in yours.

Fri, 22 Jan 2016

11:45 - 12:45
L4

InFoMM CDT Group Meeting - Introduction to Niall, Rachel & Ozzy's Research (includes complementary lunch)

Niall Bootland; Rachel Philip; Asbjørn Riseth
Abstract

The InFoMM CDT Group Meetings will follow the format of the OCIAM group meetings. We hope they will facilitate good communication between the Academic and Student community so that the research activities remain closely connected, opportunities for additional interaction are easily identified, and cross-fertilisation of ideas can be catalysed. 

Thu, 21 Jan 2016

16:00 - 17:00
L3

Group Meeting

Tmoslav Plesa, John Ockendon, Hilary Ockendon
Abstract

Tmoslav Plesa: Chemical Reaction Systems with a Homoclinic Bifurcation: An Inverse Problem, 25+5 min;

John Ockendon: Wave Homogenisation, 10 min + questions; 

Hilary Ockendon: Sloshing, 10 min + questions
 

 

Thu, 21 Jan 2016

16:00 - 17:00
L5

Height of rational points on elliptic curves in families

Pierre Le Boudec
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

Given a family $F$ of elliptic curves defined over $Q$, we are interested in the set $H(Y)$ of curves $E$ in $F$, of positive rank, and for which the minimum of the canonical heights of non-torsion rational points on $E$ is bounded by some parameter $Y$. When one can show that this set is finite, it is natural to investigate statistical properties of arithmetic objects attached to elliptic curves in the set $H(Y)$. We will describe some problems related to this, and will state some results in the case of families of quadratic twists of a fixed elliptic curve.

Thu, 21 Jan 2016

16:00 - 17:30
L4

Modelling sovereign risks: from a hybrid model to the generalized density approach

Ying Jiao
(Université Claude Bernard Lyon 1)
Abstract

Motivated by the European sovereign debt crisis, we propose a hybrid sovereign default model which combines an accessible part which takes into account the movement of the sovereign solvency and the impact of critical political events, and a totally inaccessible part for the idiosyncratic credit risk. We obtain closed-form formulas for the probability that the default occurs at political critical dates in a Markovian CEV process setting. Moreover, we introduce a generalized density framework for the hybrid default times and deduce the compensator process of default. Finally we apply the hybrid model and the generalized density to the valuation of sovereign bond and explain the significant jumps in the long-term government bond yield during the sovereign crisis.

Thu, 21 Jan 2016

14:00 - 15:00
L5

Customising image analysis using nonlinear partial differential equations

Dr. Carola Schoenlieb
(Cambridge)
Abstract

When assigned with the task of extracting information from given image data the first challenge one faces is the derivation of a truthful model for both the information and the data. Such a model can be determined by the a-priori knowledge about the image (information), the data and their relation to each other. The source of this knowledge is either our understanding of the type of images we want to reconstruct and of the physics behind the acquisition of the data or we can thrive to learn parametric models from the data itself. The common question arises: how can we customise our model choice to a particular application? Or better how can we make our model adaptive to the given data?

Starting from the first modelling strategy this talk will lead us from nonlinear diffusion equations and subdifferential inclusions of total variation type functionals as the most successful image modeltoday to non-smooth second- and third-order variational models, with data models for Gaussian and Poisson distributed data as well as impulse noise. These models exhibit solution-dependent adaptivities in form of nonlinearities or non-smooth terms in the PDE or the variational problem, respectively. Applications for image denoising, inpainting and surface reconstruction are given. After a critical discussion of these different image and data models we will turn towards the second modelling strategy and propose to combine it with the first one using a PDE constrained optimisation method that customises a parametrised form of the model by learning from examples. In particular, we will consider optimal parameter derivation for total variation denoising with multiple noise distributions and optimising total generalised variation regularisation for its application in photography.

Thu, 21 Jan 2016
12:00
L6

Obstacle problems of Signorini type, and for non-local operators

Nicola Garofalo
(Universita' degli studi di Padova)
Abstract
In this talk I will overview what is presently known about various types of obstacle problems. The focus will be on elliptic and parabolic problems of Signorini type, and on problems for non-local operators. I will discuss the role of monotonicity formulas in such problems, as well as (in the time-independent case) of some new epiperimetric inequalities. 
Wed, 20 Jan 2016
16:00
C3

Expanders and Warped Cones

Federico Vigolo
(Oxford University)
Abstract

I will illustrate how to build families of expanders out of 'very mixing' actions on measure spaces. I will then define the warped cones and show how these metric spaces are strictly related with those expanders.

Wed, 20 Jan 2016
16:00
C2

Continuity via Logic

Steve Vickers
(Birmingham)
Abstract

Point-free topology can often seem like an algebraic almost-topology, 
> not quite the same but still interesting to those with an interest in 
> it. There is also a tradition of it in computer science, traceable back 
> to Scott's topological model of the untyped lambda-calculus, and 
> developing through Abramsky's 1987 thesis. There the point-free approach 
> can be seen as giving new insights (from a logic of observations), 
> albeit in a context where it is equivalent to point-set topology. It was 
> in that tradition that I wrote my own book "Topology via Logic".
> 
> Absent from my book, however, was a rather deeper connection with logic 
> that was already known from topos theory: if one respects certain 
> logical constraints (of geometric logic), then the maps one constructs 
> are automatically continuous. Given a generic point x of X, if one 
> geometrically constructs a point of Y, then one has constructed a 
> continuous map from X to Y. This is in fact a point-free result, even 
> though it unashamedly uses points.
> 
> This "continuity via logic", continuity as geometricity, takes one 
> rather further than simple continuity of maps. Sheaves and bundles can 
> be understood as continuous set-valued or space-valued maps, and topos 
> theory makes this meaningful - with the proviso that, to make it run 
> cleanly, all spaces have to be point-free. In the resulting fibrewise 
> topology via logic, every geometric construction of spaces (example: 
> point-free hyperspaces, or powerlocales) leads automatically to a 
> fibrewise construction on bundles.
> 
> I shall present an overview of this framework, as well as touching on 
> recent work using Joyal's Arithmetic Universes. This bears on the logic 
> itself, and aims to replace the geometric logic, with its infinitary 
> disjunctions, by a finitary "arithmetic type theory" that still has the 
> intrinsic continuity, and is strong enough to encompass significant 
> amounts of real analysis.

Wed, 20 Jan 2016
15:00
L4

Multi Party Computation: Low Communication Protocols

Nigel Smart
(University of Bristol)
Abstract

In recent years there has been amazing progress in building
practical protocols for Multi-Party Computation (MPC).
So much progress in fact that there are now a number of
companies producing products utilizing this technology. A major issue with existing solutions is the high round
complexity of protocols involving more than two players. In this talk I will survey the main protocols for MPC
and recent ideas in how to obtain practical low round
complexity protocols.

Wed, 20 Jan 2016

11:00 - 12:30
S2.37

Bieberbach's Theorems

Robert Kropholler
(Oxford)
Abstract
I will go through a proof of Bieberbach's theorems proving that a group acting cocompactly on Euclidean n-space has a subgroup consisting of n independent translations. Time permitting I will also prove that there is a bound on the number of such groups for each dimension n. I will assume very little requiring only a small amount of group theory and linear algebra for the proofs. 
Tue, 19 Jan 2016

15:45 - 16:45
L4

Symplectic categories in Derived Geometry

Lino Amorim
(Oxford)
Abstract

I will describe a construction of the Weinstein symplectic category of Lagrangian correspondences in the context of shifted symplectic geometry. I will then explain how one can linearize this category starting from a "quantization" of  (-1)-shifted symplectic derived stacks: we assign a perverse sheaf to each (-1)-shifted symplectic derived stack (already done by Joyce and his collaborators) and a map of perverse sheaves to each (-1)-shifted Lagrangian correspondence (still conjectural).

Tue, 19 Jan 2016
14:30
L6

Excluding Holes

Paul Seymour
(Princeton)
Abstract

A "hole" in a graph is an induced subgraph which is a cycle of length > 3. The perfect graph theorem says that if a graph has no odd holes and no odd antiholes (the complement of a hole), then its chromatic number equals its clique number; but unrestricted graphs can have clique number two and arbitrarily large chromatic number. There is a nice question half-way between them - for which classes of graphs is it true that a bound on clique number implies some (larger) bound on chromatic number? Call this being "chi-bounded".

Gyarfas proposed several conjectures of this form in 1985, and recently there has been significant progress on them. For instance, he conjectured

  • graphs with no odd hole are chi-bounded (this is true);
  • graphs with no hole of length >100 are chi-bounded (this is true);
  • graphs with no odd hole of length >100 are chi-bounded; this is still open but true for triangle-free graphs.

We survey this and several related results. This is joint with Alex Scott and partly with Maria Chudnovsky.

Tue, 19 Jan 2016

14:30 - 15:00
L5

Sparse information representation through feature selection

Thanasis Tsanas
(University of Oxford)
Abstract
In this talk I am presenting a range of feature selection methods, which are aimed at detecting the most parsimonious subset of characteristics/features/genes. This sparse representation leads always to simpler, more interpretable models, and may lead to improvement in prediction accuracy. I survey some of the state-of-the-art developed algorithms, and discuss a novel approach which is both computationally attractive, and seems to work very effectively across a range of domains, in particular for fat datasets.
Mon, 18 Jan 2016

16:00 - 17:00
L3

4th moment of quadratic Dirichlet L-functions in function fields

Alexandra Florea
(Stanford University)
Abstract

We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.

Mon, 18 Jan 2016

16:00 - 17:00
L4

Nonlocal self-improving properties

Tuomo Kuusi
(Aalto University)
Abstract

The classical Gehring lemma for elliptic equations with measurable coefficients states that an energy solution, which is initially assumed to be $H^1$ - Sobolev regular, is actually in a better Sobolev space space $W^{1,q}$ for some $q>2$. This a consequence of a self-improving property that so-called reverse Hölder inequality implies. In the case of nonlocal equations a self-improving effect appears: Energy solutions are also more differentiable. This is a new, purely nonlocal phenomenon, which is not present in the local case. The proof relies on a nonlocal version of the Gehring lemma involving new exit time and dyadic decomposition arguments. This is a joint work with G. Mingione and Y. Sire. 

Mon, 18 Jan 2016
15:45
L6

Tight contact structures on connected sums need not be contact connected sums

Chris Wendl
(University College London)
Abstract

In dimension three, convex surface theory implies that every tight contact structure on a connected sum M # N can be constructed as a connected sum of tight contact structures on M and N. I will explain some examples showing that this is not true in any dimension greater than three.  The proof is based on a recent higher-dimensional version of a classic result of Eliashberg about the symplectic fillings of contact manifolds obtained by subcritical surgery. This is joint work with Paolo Ghiggini and Klaus Niederkrüger.

Mon, 18 Jan 2016

15:45 - 16:45
L5

"On the splitting phenomenon in the Sathe-Selberg theorem: universality of the Gamma factor

Yacine Barhoumi
(University of Warwick)
Abstract

We consider several classes of sequences of random variables whose Laplace transform presents the same type of \textit{splitting phenomenon} when suitably rescaled. Answering a question of Kowalski-Nikeghbali, we explain the apparition of a universal term, the \textit{Gamma factor}, by a common feature of each model, the existence of an auxiliary randomisation that reveals an independence structure.
The class of examples that belong to this framework includes random uniform permutations, random polynomials or random matrices with values in a finite field and the classical Sathe-Selberg theorems in probabilistic number theory. We moreover speculate on potential similarities in the Gaussian setting of the celebrated Keating and Snaith's moments conjecture. (Joint work with R. Chhaibi)
 

Mon, 18 Jan 2016

14:15 - 15:15
L5

Stein methods for Brownian motion

Laure Coutin
(Université de Toulouse)
Abstract

Motivated by a theorem of Barbour, we revisit some of the classical limit theorems in probability from the viewpoint of the Stein method. We setup the framework to bound Wasserstein distances between some distributions on infinite dimensional spaces. We show that the convergence rate for
the Poisson approximation of the Brownian motion is as expected proportional to λ −1/2 where λ is the intensity of the Poisson process. We also exhibit the speed of convergence for the Donsker Theorem and extend this result to enhanced Brownian motion.

 

Mon, 18 Jan 2016

12:00 - 13:00
L5

Modular Forms from the Arithmetic of Singular Calabi-Yau Manifolds

Philip Candelas
(Oxford)
Abstract

I will give an introductory account of the zeta-functions for one-parameter families of CY manifolds. The aim of the talk is to point out that the zeta-functions corresponding to singular manifolds of the family correspond to modular forms. In order to give this introductory account I will give a lightning review of finite fields and of the p-adic numbers.

 
 
Tue, 05 Jan 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

TBA

Dr Salvatore Filippone
(Cranfield University)
Wed, 16 Dec 2015
16:30
L1

The Travelling Santa Problem and Other Seasonal Challenges

Professor Marcus du Sautoy
(University of Oxford)
Abstract

Our Christmas Public Lecture this year will be presented by Marcus du Sautoy who will be examining an aspect of Christmas not often considered: the mathematics.

To register please email: @email

The Oxford Mathematics Christmas Lecture is generously sponsored by G-Research - Researching investment ideas to predict financial markets

Wed, 09 Dec 2015
15:00
L4

Technical history of discrete logarithms in small characteristic finite fields

Antoine Joux
(Pierre and Marie Curie University)
Abstract
Due to its use in cryptographic protocols such as the Diffie--Hellman

key exchange, the discrete logarithm problem attracted a considerable

amount of attention in the past 40 years. In this talk, we summarize

the key technical ideas and their evolution for the case of discrete

logarithms in small characteristic finite fields. This road leads from

the original belief that this problem was hard enough for

cryptographic purpose to the current state of the art where the

algorithms are so efficient and practical that the problem can no

longer be considered for cryptographic use.
Mon, 07 Dec 2015

16:00 - 17:00
L4

Biaxiality in liquid crystals at low temperatures (Please note Week 9)

Duvan Henao
(Pontificia Universidad Católica de Chile)
Abstract

We study the low-temperature limit in the Landau-de Gennes theory for liquid crystals. We prove that for minimizers for orientable Dirichlet data tend to be almost uniaxial but necessarily contain some biaxiality around the singularities of a limiting harmonic map. In particular we prove that around each defect there must necessarily exist a maximal biaxiality point, a point with a purely uniaxial configuration with a positive order parameter, and a point with a purely uniaxial configuration with a negative order parameter. Estimates for the size of the biaxial cores are also given.

This is joint work with Apala Majumdar and Adriano Pisante.

Fri, 04 Dec 2015
14:15
C3

The effect of lateral stresses on the flow of ice shelves and their role in stabilizing marine ice sheets

Sam Pegler
(University of Cambridge)
Abstract

It has been conjectured that marine ice sheets (those that

flow into the ocean) are unconditionally unstable when the underlying

bed-slope runs uphill in the direction of flow, as is typical in many

regions underneath the West Antarctic Ice Sheet. This conjecture is

supported by theoretical studies that assume a two-dimensional flow

idealization. However, if the floating section (the ice shelf) is

subject to three-dimensional stresses from the edges of the embayments

into which they flow, as is typical of many ice shelves in Antarctica,

then the ice shelf creates a buttress that supports the ice sheet.

This allows the ice sheet to remain stable under conditions that may

otherwise result in collapse of the ice sheet. This talk presents new

theoretical and experimental results relating to the effects of

three-dimensional stresses on the flow and structure of ice shelves,

and their potential to stabilize marine ice sheets.

Fri, 04 Dec 2015

14:00 - 15:00
L3

Transmural propagation of the action potential in mammalian hearts: marrying experimental and theoretical studies

Prof Godfrey Smith
(Institute of Cardiovascular & Medical Sciences University of Glasgow)
Abstract

Transmural propagation is a little studied feature of mammalian electrophysiology, this talk reviews our experimental work using different optical techniques to characterise this mode
of conduction under physiological and pathophysiological conditions.

Fri, 04 Dec 2015

13:00 - 14:00
L6

Killed Brownian motion with a prescribed lifetime distribution and models of default

Alexandru Hening
(Oxford University)
Abstract

In finance, the default time of a counterparty is sometimes modeled as the
first passage time of a credit index process below a barrier. It is
therefore relevant to consider the following question:
   If we know the distribution of the default time, can we find a unique
barrier which gives this distribution? This is known as the Inverse
First Passage Time (IFPT) problem in the literature.
   We consider a more general `smoothed' version of the inverse first
passage time problem in which the first passage time is replaced by
the first instant that the time spent below the barrier exceeds an
independent exponential random variable. We show that any smooth
distribution results from some unique continuously differentiable
barrier. In current work with B. Ettinger and T. K. Wong, we use PDE
methods to show the uniqueness and existence of solutions to a
discontinuous version of the IFPT problem.

Fri, 04 Dec 2015

10:00 - 11:00
L4

Analysis of images in multidimensional single molecule microscopy

Michael Hirsch
(STFC Rutherford Appleton Laboratory)
Abstract

Multidimensional single molecule microscopy (MSMM) generates image time series of biomolecules in a cellular environment that have been tagged with fluorescent labels. Initial analysis steps of such images consist of image registration of multiple channels, feature detection and single particle tracking. Further analysis may involve the estimation of diffusion rates, the measurement of separations between molecules that are not optically resolved and more. The analysis is done under the condition of poor signal to noise ratios, high density of features and other adverse conditions. Pushing the boundary of what is measurable, we are facing among others the following challenges. Firstly the correct assessment of the uncertainties and the significance of the results, secondly the fast and reliable identification of those features and tracks that fulfil the assumptions of the models used. Simpler models require more rigid preconditions and therefore limiting the usable data, complexer models are theoretically and especially computationally challenging.

Thu, 03 Dec 2015
17:30
L6

Near-henselian fields - valuation theory in the language of rings

Franziska Jahnke
(Münster)
Abstract

Abstract: (Joint work with Sylvy Anscombe) We consider four properties 
of a field K related to the existence of (definable) henselian 
valuations on K and on elementarily equivalent fields and study the 
implications between them. Surprisingly, the full pictures look very 
different in equicharacteristic and mixed characteristic.