Thu, 29 Oct 2015

14:00 - 15:00
L4

Classifying $A_{\mathfrak{q}}(\lambda)$ modules by their Dirac cohomology

Pavle Pandzic
(University of Zagreb)
Abstract

We will briefly review the notions of Dirac cohomology and of $A_{\mathfrak{q}}(\lambda)$ modules of real reductive groups, and recall a formula for the Dirac cohomology of an $A_{\mathfrak{q}}(\lambda)$ module. Then we will discuss to what extent an $A_{\mathfrak{q}}(\lambda)$ module is determined by its Dirac cohomology. This is joint work with Jing-Song Huang and David Vogan.

Thu, 29 Oct 2015

14:00 - 15:00
L5

Inexact computers for more accurate weather and climate predictions

Dr. Peter Dueben
(University of Oxford Department of Physics)
Abstract

In numerical atmosphere models, values of relevant physical parameters are often uncertain by more than 100% and weather forecast skill is significantly reduced after a couple of days. Still, numerical operations are typically calculated in double precision with 15 significant decimal digits. If we reduce numerical precision, we can reduce power consumption and increase computational performance significantly. If savings are reinvested to build larger supercomputers, this would allow an increase in resolution in weather and climate models and might lead to better predictions of future weather and climate. 
I will discuss approaches to reduce numerical precision beyond single precision in high performance computing and in particular in weather and climate modelling. I will present results that show that precision can be reduced significantly in atmosphere models and that potential savings can be huge. I will also discuss how rounding errors will impact model dynamics and interact with model uncertainty and predictability.

Thu, 29 Oct 2015

12:00 - 13:00
L6

Quantitative flatness results for nonlocal minimal surfaces in low dimensions

Eleonora Cinti
(WIAS Berlin)
Abstract

 

We consider minimizers of nonlocal functionals, like the fractional perimeter, or the fractional anisotropic perimeter, in low dimensions. It is known that a minimizer for the nonlocal perimeter in $\mathbb{R}^2 $ is necessarily an halfplane. We give a quantitative version of this result, in the following sense: we prove that minimizers in a ball of radius $R$ are nearly flat in $B_1$, when $R$ is large enough. More precisely, we establish a quantitative estimate on how "close" these sets are (in the $L^{1}$ -sense and in the $L^{\infty}$ -sense) to be a halfplane, depending on $R$. This is a joint work with Joaquim Serra and Enrico Valdinoci.
Wed, 28 Oct 2015
16:00
C1

Word fibers in finite p-groups

Ainhoa Iniguez
(Oxford)
Abstract

 

Let $G$ be a finite group and let $w$ be a word in $k$ variables. We write $P_w(g)$ the probability that a random tuple $(g_1,\ldots,g_k)\in G^{(k)}$ satisfies $w(g_1,\ldots,g_k)=g$. For non-solvable groups, it is shown by Abért that $P_w(1)$ can take arbitrarily small values as $n\rightarrow\infty$. Nikolov and Segal prove that for any finite group, $G$ is solvable if and only if $P_w(1)$ is positively bounded from below as $w$ ranges over all words. And $G$ is nilpotent if and only if $P_w(g)$ is positively bounded from below as $w$ ranges over all words that represent $g$Alon Amit conjectured  that in the specific case of finite nilpotent groups and for any word, $P_w(1)\ge 1/|G|$.
 
We can also consider $N_w(g)=|G|^k\cdot P_w(g)$, the number of solutions of $w=g$ in $G^{(k)}$. Note that $N_w$ is a class function. We prove that if $G$ is a finite $p$-group of nilpotency class 2, then $N_w$ is a generalized character. What is more, if $p$ is odd, then $N_w$ is a character and for $2$-groups we can characterize when $N_{x^{2r}}$ is a character. What is more, we prove the conjecture of A. Amit for finite groups of nilpotency class 2. This result was indepently proved by M. Levy. Additionally, we prove that for any word $w$ and any finite $p$-group of class two and exponent $p$, $P_w(g)\ge 1/|G|$ for $g\in G_w$. As far as we know, A. Amit's conjecture is still open for higher nilpotency class groups. For $p$-groups of higher nilpotency class, we find examples of words $w$ for which $N_w$ is no longer a generalized character. What is more, we find examples of non-rational words; i.e there exist finite $p$-groups $G$ and words $w$ for which $g\in G_w$ but $g^{i}\not\in G_w$ for some $(i,p)=1$.
Tue, 27 Oct 2015

17:30 - 18:30
L3

Empirical phenomena and universal laws

Professor Peter McCullagh, FRS,
(University of Chicago)
Abstract

In 1943 Fisher, together with Corbet and Williams, published a study on the relation between the number of species and the number of individuals, which has since been recognized as one of the most influential papers in 20th century ecology. It was a combination of empirical work backed up by a simple theoretical argument, which describes a sort of universal law governing random partitions, such as the celebrated Ewens partition whose original derivation flows from the Fisher-Wright model. This talk will discuss several empirical studies of a similar sort, including Taylor's law and recent work related to Fairfield-Smith's work on the variance of spatial averages.

Tue, 27 Oct 2015

15:45 - 16:45
L4

Point-like bounding chains in open Gromov-Witten theory

Sara Tukachinsky
(Hebrew University of Jerusalem)
Abstract

Over a decade ago Welschinger defined invariants of real symplectic manifolds of complex dimension 2 and 3, which count $J$-holomorphic disks with boundary and interior point constraints. Since then, the problem of extending the definition to higher dimensions has attracted much attention.
  We generalize Welschinger's invariants with boundary and interior constraints to higher odd dimensions using the language of $A_\infty$-algebras and bounding chains. The bounding chains play the role of boundary point constraints. The geometric structure of our invariants is expressed algebraically in a version of the open WDVV equations. These equations give rise to recursive formulae which allow the computation of all invariants for $\mathbb{CP}^n$.
  This is joint work with Jake Solomon.

Tue, 27 Oct 2015
14:30
L6

Density methods for partition regularity

Ben Barber
(University of Birmingham)
Abstract

A system of linear equations with integer coefficients is partition regular if, whenever the natural numbers are finitely coloured, there is a monochromatic solution. The finite partition regular systems were completely characterised by Rado in terms of a simple property of their matrix of coefficients. As a result, finite partition regular systems are very well understood.

Much less is known about infinite systems. In fact, only a very few families of infinite partition regular systems are known. I'll explain a relatively new method of constructing infinite partition regular systems, and describe how it has been applied to settle some basic questions in the area.

Tue, 27 Oct 2015

14:15 - 15:30
L4

Symplectic resolutions of quiver varieties.

Gwyn Bellamy
(University of Glasgow)
Abstract

Quiver varieties, as introduced by Nakaijma, play a key role in representation theory. They give a very large class of symplectic singularities and, in many cases, their symplectic resolutions too. However, there seems to be no general criterion in the literature for when a quiver variety admits a symplectic resolution. In this talk I will give necessary and sufficient conditions for a quiver variety to admit a symplectic resolution.  This result is based on work of Crawley-Bouvey and of Kaledin, Lehn and Sorger. The talk is based on joint work with T. Schedler.
 

Mon, 26 Oct 2015

16:00 - 17:00
C2

Some ideas on rational/integral points on algebraic curves

Junghwan Lim
(Oxford)
Abstract

I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.

Mon, 26 Oct 2015
15:45
Oxford-Man Institute

Liouville quantum gravity as a mating of trees

Jason Peter Miller
(MIT)
Abstract

There is a simple way to “glue together” a coupled pair of continuum random trees to produce a topological sphere. The sphere comes equipped with a measure and a space-filling curve (which describes the “interface” between the trees). We present an explicit and canonical way to embed the sphere into the Riemann sphere. In this embedding, the measure is Liouville quantum gravity with parameter gamma in (0,2), and the curve is space-filling version of SLE with kappa=16/gamma^2. Based on joint work with Bertrand Duplantier and Scott Sheffield

Mon, 26 Oct 2015

15:45 - 16:45
Oxford-Man Institute

TBC

JASON PETER MILLER
(MIT, USA)
Abstract

TBC

Mon, 26 Oct 2015
15:45
L6

A cubical flat torus theorem

Dani Wise
(McGill University and IHP Paris)
Abstract

I will describe a “cubical flat torus theorem” for a group G acting properly and cocompactly on a CAT(0) cube complex.
This states that every “highest” free abelian subgroup of G acts properly and cocompactly on a convex subcomplex that is quasi-isometric to a Euclidean space.
I will describe some simple consequences, as well as the original motivation which was to prove the “bounded packing property” for cyclic subgroups of G.
This is joint work with Daniel Woodhouse.

Mon, 26 Oct 2015

14:15 - 15:45
Oxford-Man Institute

An adaptive inference algorithm for integral of one form along rough paths

NI HAO
(University of Oxford)
Abstract

We consider a controlled system, in which an input $X: [0, T] \rightarrow E:= \mathbb{R}^{d}$ is a continuous but potentially highly oscillatory path and the corresponding output $Y$ is the line integral along $X$, for some unknown function $f: E \rightarrow E$. The rough paths theory provides a general framework to answer the question on which mild condition of $X$ and $f$, the integral $I(X)$ is well defined. It is robust enough to allow to treat stochastic integrals in a deterministic way. In this paper we are interested in identification of controlled systems of this type. The difficulty comes from the high dimensionality caused by the input of a function type. We propose novel adaptive and non-parametric algorithms to learn the functional relationship between the  input and the output from the data by carefully choosing the feature set of paths based on the rough paths theory and applying linear regression techniques. The algorithms is demonstrated on a financial application where the task is to predict the P$\&$L of the unknown trading strategy.

Mon, 26 Oct 2015
14:15
L4

The complex geometry of Teichmüller spaces and bounded symmetric domains.

Stergios Antonakoudis
(Cambridge)
Abstract

From a complex analytic perspective, both Teichmüller spaces and
symmetric spaces can be realised as contractible bounded domains, that
have several features in common but also exhibit many differences. In
this talk we will study isometric maps between these two important
classes of bounded domains equipped with their intrinsic Kobayashi metric.

Mon, 26 Oct 2015

12:00 - 13:00
L5

Generalising Calabi-Yau for generic flux backgrounds

Anthony Ashmore
(Imperial College)
Abstract

Calabi-Yau manifolds without flux are perhaps the best-known
supergravity backgrounds that leave some supersymmetry unbroken. The
supersymmetry conditions on such spaces can be rephrased as the
existence and integrability of a particular geometric structure. When
fluxes are allowed, the conditions are more complicated and the
analogue of the geometric structure is not well understood.

In this talk, I will define the analogue of Calabi-Yau geometry for
generic D=4, N=2 backgrounds with flux in both type II and
eleven-dimensional supergravity. The geometry is characterised by a
pair of G-structures in 'exceptional generalised geometry' that
interpolate between complex, symplectic and hyper-Kahler geometry.
Supersymmetry is then equivalent to integrability of the structures,
which appears as moment maps for diffeomorphisms and gauge
transformations. Similar structures also appear in D=5 and D=6
backgrounds with eight supercharges.

As a simple application, I will discuss the case of AdS5 backgrounds
in type IIB, where deformations of these geometric structures give
exactly marginal deformations of the dual field theories.

 
 
Thu, 22 Oct 2015
17:30
L6

Definability in algebraic extensions of p-adic fields

Angus Macintyre
(Queen Mary University London)
Abstract

In the course of work with Jamshid Derakhshan on definability in adele rings, we came upon various problems about definability and model completeness for possibly infinite dimensional algebraic extensions of p-adic fields (sometimes involving uniformity across p). In some cases these problems had been closely approached in the literature but never  explicitly considered.I will explain what we have proved, and try to bring out many big gaps in our understanding of these matters. This  seems appropriate just over 50 years after the breakthroughs of Ax-Kochen and Ershov.

Thu, 22 Oct 2015

16:00 - 17:00
C5

Einstein metrics on 4-manifolds

Alejandro Betancourt
(Oxford)
Abstract


Abstract: Four manifolds are some of the most intriguing objects in topology. So far, they have eluded any attempt of classification and their behaviour is very different from what one encounters in other dimensions. On the other hand, Einstein metrics are among the canonical types of metrics one can find on a manifold. In this talk I will discuss many of the peculiarities that make dimension four so special and see how Einstein metrics could potentially help us understand more about four manifolds.

Thu, 22 Oct 2015

16:00 - 17:00
L5

Linear Algebra with Errors, Coding Theory, Cryptography and Fourier Analysis on Finite Groups

Steven Galbraith
(University of Auckland)
Abstract

Solving systems of linear equations $Ax=b$ is easy, but how can we solve such a system when given a "noisy" version of $b$? Over the reals one can use the least squares method, but the problem is harder when working over a finite field. Recently this subject has become very important in cryptography, due to the introduction of new cryptosystems with interesting properties.

The talk will survey work in this area. I will discuss connections with coding theory and cryptography. I will also explain how Fourier analysis in finite groups can be used to solve variants of this problem, and will briefly describe some other applications of Fourier analysis in cryptography. The talk will be accessible to a general mathematical audience.

Thu, 22 Oct 2015

16:00 - 17:00
L3

Information processing in feedforward neuronal networks

Alex Cayco Gajic
(UCL)
Abstract

Feedforward layers are integral step in processing and transmitting sensory information across different regions the brain. Yet experiments reveal the difficulty of stable propagation through layers without causing neurons to synchronize their activity. We study the limits of stable propagation in a discrete feedforward model of binary neurons. By analyzing the spectral properties of a mean-field Markov chain model, we show when such information transmission persists. Addition of inhibitory neurons and synaptic noise increases the robustness of asynchronous rate transmission. We close with an example of feedforward processing in the input layer to cerebellum. 

Thu, 22 Oct 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Constraint preconditioning for the coupled Stokes-Darcy system

Dr. Scott Ladenheim
(Manchester University)
Abstract

We propose the use of a constraint preconditioner for the iterative solution of the linear system arising from the finite element discretization of the coupled Stokes-Darcy system. The Stokes-Darcy system is a set of coupled PDEs that can be used to model a freely flowing fluid over porous media flow. The fully coupled system matrix is large, sparse, non-symmetric, and of saddle point form. We provide for exact versions of the constraint preconditioner spectral and field-of-values bounds that are independent of the underlying mesh width. We present several numerical experiments, using the deal.II finite element library, that illustrate our results in both two and three dimensions. We compare exact and inexact versions of the constraint preconditioner against standard block diagonal and block lower triangular preconditioners to illustrate its favorable properties.

Thu, 22 Oct 2015

12:00 - 13:00
L6

A two-speed model for rate-independent elasto-plasticity

Filip Rindler
(University of Warwick)
Abstract
In the first part of this talk I will develop a model for (phenomenological) large-strain evolutionary elasto-plasticity that aims to find a balance between physical accuracy and mathematical tractability. Starting from a viscous dissipation model I will show how a time rescaling leads to the new concept of "two-speed" solutions, which combine a rate-independent "slow" evolution with rate-dependent "fast" transients during jumps. An existence theorem for two-speed solutions to fully nonlinear elasto-plasticity models is the long-term goal and as a first step I will present an existence result for the small-strain situation in this new framework. This theorem combines physically realistic behaviour on jumps with minimisation in the "elastic" variables. The proof hinges on a time-stepping scheme that alternates between elastic minimisation and elasto-plastic relaxation. The key technical ingredient the "propagation of (higher) regularity" from one step to the next.
Thu, 22 Oct 2015
11:00
C5

Algebraic spaces and Zariski geometries.

Alfonso Guido Ruiz
(Oxford)
Abstract

I will explain how algebraic spaces can be presented as Zariski geometries and prove some classical facts about algebraic spaces using the theory of Zariski geometries.

Wed, 21 Oct 2015
16:00
C1

Relative Ends and CAT(0) Cube Complexes

Alexander Margolis
(Oxford)
Abstract

For a finitely generated group $G$ with subgroup $H$ we define $e(G,H)$, the relative ends of the pair $(G,H)$, to be the number of ends of the Cayley graph of G quotiented out by the left action of H. We will examine some basic properties of relative ends and will outline the theorem of Sageev showing that $e(G,H)>1$ if and only if $G$ acts essentially on a simply connected CAT(0) cube complex. If time permits, we will outline Niblo's proof of Stallings' theorem using Sageev's construction.

Wed, 21 Oct 2015

11:00 - 12:30
N3.12

Some Theorems of the Greeks

Gareth Wilkes
(Oxford)
Abstract

I will give a historical overview of some of the theorems proved by the
Ancient Greeks, which are now taken for granted but were, and are,
landmarks in the history of mathematics. Particular attention will be
given to the calculation of areas, including theorems of Hippocrates,
Euclid and Archimedes.

Tue, 20 Oct 2015

15:45 - 16:45
L4

Generating the Fukaya categories of Hamiltonian G-manifolds

Yanki Lekili
(King's College London)
Abstract

Let $G$ be a compact Lie group and $k$ be a field of characteristic $p\ge 0$ such that $H^*(G)$ does not have $p$-torsion. We show that a free Lagrangian orbit of a Hamiltonian $G$-action on a compact, monotone, symplectic manifold $X$ split-generates an idempotent summand of the monotone Fukaya category over $k$ if and only if it represents a non-zero object of that summand. Our result is based on: an explicit understanding of the wrapped Fukaya category through Koszul twisted complexes involving the zero-section and a cotangent fibre; and a functor canonically associated to the Hamiltonian $G$-action on $X$. Several examples can be studied in a uniform manner including toric Fano varieties and certain Grassmannians. 

Tue, 20 Oct 2015
14:30
L6

Quantitative quasirandomness

Benny Sudakov
(ETH Zurich)
Abstract

A graph is quasirandom if its edge distribution is similar (in a well defined quantitative way) to that of a random graph with the same edge density. Classical results of Thomason and Chung-Graham-Wilson show that a variety of graph properties are equivalent to quasirandomness. On the other hand, in some known proofs the error terms which measure quasirandomness can change quite dramatically when going from one property to another which might be problematic in some applications.

Simonovits and Sós proved that the property that all induced subgraphs have about the expected number of copies of a fixed graph $H$ is quasirandom. However, their proof relies on the regularity lemma and gives a very weak estimate. They asked to find a new proof for this result with a better estimate. The purpose of this talk is to accomplish this.

Joint work with D. Conlon and J. Fox

Tue, 20 Oct 2015

14:00 - 15:00
L5

Simple unified convergence proofs for Trust Region and a new ARC variant, and implementation issues

Jean-Pierre Dussault
(Universite de Sherbrooke)
Abstract
We provide a simple convergence analysis unified for TR and a new ARC algorithms, which we name ARCq and which is very close in spirit to trust region methods, closer than the original ARC is. We prove global convergence to second order points. We also obtain as a corollary the convergence of the original ARC method. Since one of our aims is to achieve a simple presentation, we sacrifice some generality which we discuss at the end of our developments. In this simplified setting, we prove the optimal complexity property for the ARCq and identify the key elements which allow it. We then propose efficient implementations using a Cholesky like factorization as well as a scalable version based on conjugate gradients.
Tue, 20 Oct 2015

12:30 - 13:30
Oxford-Man Institute

On prospect theory in a dynamic context

Sebastian Ebert
(Tilburg University)
Abstract

We provide a result on prospect theory decision makers who are naïve about the time inconsistency induced by probability weighting. If a market offers a sufficiently rich set of investment strategies, investors postpone their trading decisions indefinitely due to a strong preference for skewness. We conclude that probability weighting in combination with naïveté leads to unrealistic predictions for a wide range of dynamic setups. Finally, I discuss recent work on the topic that invokes different assumptions on the dynamic modeling of prospect theory.

Tue, 20 Oct 2015

12:00 - 13:30
L4

Recent progress in Ambitwistor strings

Yvonne Geyer
(Oxford)
Abstract

New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.

Mon, 19 Oct 2015

16:00 - 17:00
Oxford-Man Institute

Computing harmonic measures for the Lévy stable process

THOMAS SIMON
(University of Lille 1)
Abstract

Abstract:In the first part of the talk, using classical hypergeometric identities, I will compute the harmonic measure of finite intervals and their complementaries for the Lévy stable process on the line. This gives a simple and unified proof of several results by Blumenthal-Getoor-Ray, Rogozin, and Kyprianou-Pardo-Watson. In the second part of the talk, I will consider the two-dimensional Markov process based on the stable Lévy process and its area process. I will give two explicit formulae for the harmonic measure of the split complex plane. These formulae allow to compute the persistence exponent of the stable area process, solving a problem raised by Zhan Shi. This is based on two joint works with Christophe Profeta.

 

Mon, 19 Oct 2015

16:00 - 17:00
C2

Algebraic Automorphic Forms and the Langlands Program

Benjamin Green
(Oxford)
Abstract

In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture. 

Mon, 19 Oct 2015

16:00 - 17:00
L5

The tangential touch problem for fully nonlinear elliptic operators

Emanuel Indrei
(Carnegie Mellon Univeristy)
Abstract
The tangential touch problem in elliptic theory consists of exposing the dynamics of the free boundary near the fixed boundary in obstacle problems. The solution of this problem is discussed for fully nonlinear elliptic operators in two dimensions.
Based on joint work with Andreas Minne.
Mon, 19 Oct 2015
15:45
L6

On the combinatorics of the two-dimensional Ising model

David Cimasoni
(University of Geneva)
Abstract

In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
 

Mon, 19 Oct 2015

14:15 - 15:15
Oxford-Man Institute

The microstructural foundations of rough volatility models

MATHIEU ROSENBAUM
(Paris Polytechnique)
Abstract

Abstract: It has been recently shown that rough volatility models reproduce very well the statistical properties of low frequency financial data. In such models, the volatility process is driven by a fractional Brownian motion with Hurst parameter of order 0.1. The goal of this talk is to explain how such fractional dynamics can be obtained from the behaviour of market participants at the microstructural scales.

Using limit theorems for Hawkes processes, we show that a rough volatility naturally arises in the presence of high frequency trading combined with metaorders splitting. This is joint work with Thibault Jaisson.

Mon, 19 Oct 2015

12:00 - 13:00
L5

From special geometry to Nernst branes

Thomas Mohaupt
(Liverpool)
Abstract
Dimensional reduction over time is a useful method for constructing stationary solutions in supergravity, both extremal and non-extremal. For theories with N=2 vector multiplets one can in addition exploit the special Kahler geometry encoding the couplings. I will explain why aformulation in terms of real coordinates and a Hesse potential is useful, and how special Kahler geometry is related to
para-quaternionic Kahler geometry by dimensional reduction. As an application I will present the construction of black brane solutions with vanishing entropy density at zero temperature (`Nernst branes') in FI-gauged N=2 supergravity in four and five dimensions.
 
 
Fri, 16 Oct 2015
14:15
C3

Turbulence in shear flows with and without surface waves

Greg Chini
(University of New Hampshire)
Abstract

Surface waves modify the fluid dynamics of the upper ocean not only through wave breaking but also through phase-averaged effects involving the surface-wave Stokes drift velocity. Chief among these rectified effects is the generation of a convective flow known as Langmuir circulation (or “Langmuir turbulence”). Like stress-driven turbulence in the absence of surface waves, Langmuir turbulence is characterized by streamwise-oriented quasi-coherent roll vortices and streamwise streaks associated with spanwise variations in the streamwise flow. To elucidate the fundamental differences between wave-free (shear) and wave-catalyzed (Langmuir) turbulence, two separate asymptotic theories are developed in parallel. First, a large Reynolds number analysis of the Navier–Stokes equations that describes a self-sustaining process (SSP) operative in linearly stable wall-bounded shear flows is recounted. This theory is contrasted with that emerging from an asymptotic reduction in the strong wave-forcing limit of the Craik–Leibovich (CL) equations governing Langmuir turbulence. The comparative analysis reveals important structural and dynamical differences between the SSPs in shear flows with and without surface waves and lends further support to the view that Langmuir turbulence in the upper ocean is a distinct turbulence regime. 

Fri, 16 Oct 2015

14:00 - 15:00
L3

What’s lumen got to do with it? Mechanics and transport in lung morphogenesis

Dr Sharon Lubkin
(Dept of Maths UCSU)
Abstract

Mammalian lung morphology is well optimized for efficient bulk transport of gases, yet most lung morphogenesis occurs prenatally, when the lung is filled with liquid - and at birth it is immediately ready to function when filled with gas. Lung morphogenesis is regulated by numerous mechanical inputs including fluid secretion, fetal breathing movements, and peristalsis. We generally understand which of these broad mechanisms apply, and whether they increase or decrease overall size and/or branching. However, we do not generally have a clear understanding of the intermediate mechanisms actuating the morphogenetic control. We have studied this aspect of lung morphogenesis from several angles using mathematical/mechanical/transport models tailored to specific questions. How does lumen pressure interact with different locations and tissues in the lung? Is static pressure equivalent to dynamic pressure? Of the many plausible cellular mechanisms of mechanosensing in the prenatal lung, which are compatible with the actual mechanical situation? We will present our models and results which suggest that some hypothesized intermediate mechanisms are not as plausible as they at first seem.

 

Thu, 15 Oct 2015

16:00 - 17:30
L4

Numerical approximation of irregular SDEs via Skorokhod embeddings

Stefan Ankirchner
(Friedrich-Schiller-Universität Jena)
Abstract

We provide a new algorithm for approximating the law of a one-dimensional diffusion M solving a stochastic differential equation with possibly irregular coefficients.
The algorithm is based on the construction of Markov chains whose laws can be embedded into the diffusion M with a sequence of stopping times. The algorithm does not require any regularity or growth assumption; in particular it applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly. We show that if the diffusion coefficient is bounded and bounded away from 0, then our algorithm has a weak convergence rate of order 1/4. Finally, we illustrate the algorithm's performance with several examples.