15:45
Hamiltonian and quasi-Hamiltonian reduction via derived symplectic geometry
Abstract
I will explain an approach to Hamiltonian reduction using derived
symplectic geometry. Roughly speaking, the reduced space can be
presented as an intersection of two Lagrangians in a shifted symplectic
space, which therefore carries a natural symplectic structure. A slight
modification of the construction gives rise to quasi-Hamiltonian
reduction. This talk will also serve as an introduction to the wonderful
world of derived symplectic geometry where statements that morally ought
to be true are indeed true.
Spanning Trees in Random Graphs
Abstract
Software Carpentry in Computational Science
Abstract
This brief lecture will highlight several best-practice observations and
research for writing software for mathematical research, drawn from a
number of sources, including; Best Practices for Scientific Computing
[BestPractices], Code Complete [CodeComplete], and personal observation
from the presenter. Specific focus will be given to providing the
definition of important concepts, then describing how to apply them
successfully in day-to-day research settings. Following the outline from
Best Practices, we will cover the following topics:
* Write Programs for People, Not Computers
* Let the Computer Do the Work
* Make Incremental Changes
* Don't Repeat Yourself (or Others)
* Plan for Mistakes
* Optimize Software Only after It Works Correctly
* Document Design and Purpose, Not Mechanics
* Collaborate
[BestPractices]
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001745
[CodeComplete] http://www.cc2e.com/Default.aspx
Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS
Asymptotic modelling of the fluid flow with a pressure-dependent viscosity
Abstract
Galois Theory and the S-unit Equation
Abstract
a and b rational numbers which are units at all primes not in S. By a theorem of Siegel,
for any given S this equation will only have finitely many solutions. This talk will review
the relation between this equation and other Diophantine problems, and will explain a
Galois-theoretic approach to proving Siegel's theorem.
Constructing and classifying TQFTs via surgery
Abstract
We describe a framework for defining and classifying TQFTs via
surgery. Given a functor
from the category of smooth manifolds and diffeomorphisms to
finite-dimensional vector spaces,
and maps induced by surgery along framed spheres, we give a set of axioms
that allows one to assemble functorial coboridsm maps.
Using this, we can reprove the correspondence between (1+1)-dimensional
TQFTs and commutative Frobenius algebras,
and classify (2+1)-dimensional TQFTs in terms of a new structure, namely
split graded involutive nearly Frobenius algebras
endowed with a certain mapping class group representation. The latter has
not appeared in the literature even in conjectural form.
This framework is also well-suited to defining natural cobordism maps in
Heegaard Floer homology.
Mirror symmetry for varieties of general type
Abstract
Calabi-Yau Fourfolds, F-theory and Fluxes
Abstract
I will discuss several recent developments regarding the construction of fluxes for F-theory on Calabi-Yau fourfolds. Of particular importance to the effective physics is the structure of the middle (co)homology groups, on which new results are presented. Fluxes dynamically drive the fourfold to Noether-Lefschetz loci in moduli space. While the structure of such loci is generally unknown for Calabi-Yau fourfolds, this problem can be answered in terms of arithmetic for K3 x K3 and a classification is possible.
14:00
On the o-minimal Hilbert's fifth problem
Abstract
The fundamental results about definable groups in o-minimal structures all suggested a deep connection between these groups and Lie groups. Pillay's conjecture explicitly formulates this connection in analogy to Hilbert's fifth problem for locally compact topological groups, namely, a definably compact group is, after taking a suitable the quotient by a "small" (type definable of bounded index) subgroup, a Lie group of the same dimension. In this talk we will report on the proof of this conjecture in the remaining open case, i.e. in arbitrary o-minimal structures. Most of the talk will be devoted to one of the required tools, the formalism of the six Grothendieck operations of o-minimals sheaves, which might be useful on it own.
Yau's Proof of the Calabi Conjecture
Abstract
The Calabi conjecture, posed in 1954 and proved by Yau in 1976, guaranties the existence of Ricci-flat Kahler metrics on compact Kahler manifolds with vanishing first Chern class, providing examples of the so called Calabi-Yau manifolds. The latter are of great importance to the fields of Riemannian Holonomy Groups, having Hol0 as a subgroup of SU; Calibrated Geometry, more precisely Special Lagrangian Geometry; and to String theory with the discovery of the phenomenon of Mirror Symmetry (to mention a few!). In the talk, we will discuss the necessary background to formulate the Calabi conjecture and explain some of the main ideas behind its proof by Yau, which itself is a jewel from the point of view of non-linear PDEs.
THE STRUCTURE OF J_0(N)[m] AT AN EISENSTEIN PRIME m
Abstract
In this talk, we will discuss the dimension of $J_0(N)[m]$ at an Eisenstein prime m for
square-free level N. We will also study the structure of $J_0(N)[m]$ as a Galois module.
This work generalizes Mazur’s work on Eisenstein ideals of prime level to the case of
arbitrary square-free level up to small exceptional cases.
Computational Modeling of the Eukaryotic Cytoskeleton
Abstract
Acto-myosin network growth and remodeling in vivo is based on a large number of chemical and mechanical processes, which are mutually coupled and spatially and temporally resolved. To investigate the fundamental principles behind the self-organization of these networks, we have developed detailed physico-chemical, stochastic models of actin filament growth dynamics, where the mechanical rigidity of filaments and their corresponding deformations under internally and externally generated forces are taken into account. Our work sheds light on the interplay between the chemical and mechanical processes, and also will highlights the importance of diffusional and active transport phenomena. For example, we showed that molecular transport plays an important role in determining the shapes of the commonly observed force-velocity curves. We also investigated the nonlinear mechano-chemical couplings between an acto-myosin network and an external deformable substrate.
Theta in FX Volatility Modelling and Risk Management
Abstract
From a theoretical point of view, theta is a relatively simple quantity: the rate of change in value of a financial derivative with respect to time. In a Black-Scholes world, the theta of a delta hedged option can be viewed as `rent’ paid in exchange for gamma. This relationship is fundamental to the risk-management of a derivatives portfolio. However, in the real world, the situation becomes significantly more complicated. In practice the model is continually being recalibrated, and whereas in the Black-Scholes world volatility is not a risk factor, in the real world it is stochastic and carries an associated risk premium. With the heightened interest in automation and electronic trading, we increasingly need to attempt to capture trading, marking and risk management practice algorithmically, and this requires careful consideration of the relationship between the risk neutral and historical measures. In particular these effects need to be incorporated in order to make sense of theta and the time evolution of a derivatives portfolio in the historical measure.
Adjoint-based optimisation for flow analysis and flow control
Abstract
Gradient-based optimisation techniques have become a common tool in the analysis of fluid systems. They have been applied to replace and extend large-scale matrix decompositions to compute optimal amplification and optimal frequency responses in unstable and stable flows. We will show how to efficiently extract linearised and adjoint information directly from nonlinear simulation codes and how to use this information for determining common flow characteristics. We also extend this framework to deal with the optimisation of less common norms. Examples from aero-acoustics and mixing will be presented.
Martensitic Disclinations, Modeling Analysis and Experiments
11:00
12:30
Sandpile groups of Eulerian digraphs and an explicit presentation for the group of units in F_p[Z_n]
15:45
Exotic spheres and the topology of the symplectomorphism group
Abstract
Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.
Joint work with Jonny Evans.
Convex Relaxation Methods for Image Segmentation and Stereo Reconstruction
Abstract
We present advances in several fundamental fields of computer vision: image segmentation, object tracking, stereo reconstruction for depth map estimation and full 3D multi-view reconstruction. The basic method applied to these fields is convex relaxation. Convex relaxation methods allow for global optimization of numerous energy functionals and provide a step towards less user input and more automation. We will show how the respective computer vision problems can be formulated in this convex optimization framework. Efficient parallel implementations of the arising numerical schemes using graphics processing units allow for interactive applications.
The structure of graphs which are locally indistinguishable from a lattice.
Abstract
We study the properties of finite graphs in which the ball of radius $r$ around each vertex induces a graph isomorphic to some fixed graph $F$. (Such a graph is said to be $r$-locally-$F$.) This is a natural extension of the study of regular graphs, and of the study of graphs of constant link. We focus on the case where $F$ is $\mathbb{L}^d$, the $d$-dimensional integer lattice. We obtain a characterisation of all the finite graphs in which the ball of radius $3$ around each vertex is isomorphic to the ball of radius $3$ in $\mathbb{L}^d$, for each integer $d$. These graphs have a very rigidly proscribed global structure, much more so than that of $(2d)$-regular graphs. (They can be viewed as quotient lattices in certain 'flat orbifolds'.) Our results are best possible in the sense that '3' cannot be replaced with '2'. Our proofs use a mixture of techniques and results from combinatorics, algebraic topology and group theory. We will also discuss some results and open problems on the properties of a random n-vertex graph which is $r$-locally-$F$. This is all joint work with Itai Benjamini (Weizmann Institute of Science).
Overturning ideas: Disentangling the climate system using thermodynamic coordinates
X-ray imaging with emitter arrays
Abstract
We investigate an X-ray imaging system that fires multiple point sources of radiation simultaneously from close proximity to a probe. Radiation traverses the probe in a non-parallel fashion, which makes it necessary to use tomosynthesis as a preliminary step to calculating a 2D shadowgraph. The system geometry requires imaging techniques that differ substantially from planar X-rays or CT tomography. We present a proof of concept of such an imaging system, along with relevant artefact removal techniques. This work is joint with Kishan Patel.
Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux
Abstract
I will show uniqueness result for BV solutions of scalar conservation laws with discontinuous flux in several space dimensions. The proof is based on the notion of kinetic solution and on a careful analysis of the entropy dissipation along the discontinuities of the flux.
A-free Groups and Tree-free Groups
Abstract
The idea of A-free group, where A is a discrete ordered abelian group, has been introduced by Myasnikov, Remeslennikov and Serbin. It generalises the construction of free groups. A proof will be outlined that a group is A-free for some A if and only if it acts freely and without inversions on a \lambda-tree, where \lambda is an arbitrary ordered abelian group.
Commutative K-theory as a cohomology theory
Abstract
Vector bundles over a compact manifold can be defined via transition
functions to a linear group. Often one imposes
conditions on this structure group. For example for real vector bundles on
may ask that all
transition functions lie in the special orthogonal group to encode
orientability. Commutative K-theory arises when we impose the condition
that the transition functions commute with each other whenever they are
simultaneously defined.
We will introduce commutative K-theory and some natural variants of it,
and will show that they give rise to new generalised
cohomology theories.
This is joint work with Adem, Gomez and Lind building on previous work by
Adem, F. Cohen, and Gomez.
Ito map and iterated integrals
Abstract
The Taylor expansion of a controlled differential equation suggests that the solution at time 1 depends on the driving path only through the latter's iterated integrals up to time 1, if the vector field is infinitely differentiable. Hambly and Lyons proved that this remains true for Lipschitz vector fields if the driving path has bounded total variation. We extend the Hambly-Lyons result for weakly geometric rough paths in finite dimension. Joint work with X. Geng, T. Lyons and D. Yang.
Non-reductive geometric invariant theory and applications in algebraic, symplectic and hyperkahler geometry
Variational segmentation models for selective extraction of features in an image – challenges in modelling, algorithms and applications
Abstract
Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision of automatically detecting objects in an image.
In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.
This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu, L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand), M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc. [Related publications from http://www.liv.ac.uk/~cmchenke ]
Variational Segmentation Models for Selective Extraction of Features in An Image: Challenges in Modelling, Algorithms and Applications
Abstract
Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision of automatically detecting objects in an image.
In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.
This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu, L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand), M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc.
[Related publications from http://www.liv.ac.uk/~cmchenke ]
Stochastic and Multiscale Problems
Abstract
The aim of this two-day workshop is to bring together mathematicians, biologists and researchers from other disciplines whose work involves stochastic and multiscale phenomenon, to identify common methodologies to studying such systems, both from a numerical and analytical perspective. Relevant topics include asymptotic methods for PDEs; multiscale analysis of stochastic dynamical systems; mean-field limits of collective dynamics. Numerical methods, mathematical theory and applications (with a specific focus on biology) will all be discussed. The workshop will take place on the 1st and 2nd of September, at the Mathematical Institute, Oxford University. Please visithttps://sites.google.com/site/stochmultiscale2014/ for more information and to register.
Stochastic and Multiscale Problems
Abstract
The aim of this two-day workshop is to bring together mathematicians, biologists and researchers from other disciplines whose work involves stochastic and multiscale phenomenon, to identify common methodologies to studying such systems, both from a numerical and analytical perspective. Relevant topics include asymptotic methods for PDEs; multiscale analysis of stochastic dynamical systems; mean-field limits of collective dynamics. Numerical methods, mathematical theory and applications (with a specific focus on biology) will all be discussed. The workshop will take place on the 1st and 2nd of September, at the Mathematical Institute, Oxford University. Please visithttps://sites.google.com/site/stochmultiscale2014/ for more information and to register.
14:00
Modeling and Computation of Security-constrained Economic Dispatch with Multi-stage Rescheduling
Abstract
Economic dispatch is a critical part of electricity planning and
operation. Enhancing the dispatch problem to improve its robustness
in the face of equipment failures or other contingencies is standard
practice, but extremely time intensive, leading to restrictions on
the richness of scenarios considered. We model post-contingency
corrective actions in the security-constrained economic dispatch
and consider multiple stages of rescheduling to meet different
security constraints. The resulting linear program is not solvable
by traditional LP methods due to its large size. We devise and
implement a series of algorithmic enhancements based on the Benders'
decomposition method to ameliorate the computational difficulty.
In addition, we propose a set of online measures to diagnose
and correct infeasibility issues encountered in the solution process.
The overall solution approach is able to process the ``N-1''
contingency list in ten minutes for all large network cases
available for experiments. Extensions to the nonlinear setting will
be discussed via a semidefinite relaxation.
Symmetries and Correspondences in Number Theory, Geometry, Algebra and Quantum Computing: Intra-disciplinary Trends (organised by Kobi Kremnitzer et al)
Abstract
July 5
9:30-10:30
Robert Langlands (IAS, Princeton)
Problems in the theory of automorphic forms: 45 years later
11:00-12:00
Christopher Deninger (Univ. Münster)
Zeta functions and foliations
13:30-14:30
Christophe Soulé (IHES, Bures-sur-Yvette)
A singular arithmetic Riemann-Roch theorem
14:40-15:40
Minhyong Kim (Univ. Oxford)
Non-abelian reciprocity laws and Diophantine geometry
16:10-17:10
Constantin Teleman (Berkeley/Oxford)
Categorical representations and Langlands duality
July 6
9:30-10:30
Ted Chinburg (Univ. Pennsylvania, Philadelphia)
Higher Chern classes in Iwasawa theory
11:00-12:00
Yuri Tschinkel (Courant Institute, New York)
Introduction to almost abelian anabelian geometry
13:30-14:30
Ralf Meyer (Univ. Göttingen)
Groupoids and higher groupoids
14:40-15:40
Dennis Gaitsgory (Harvard Univ., Boston)
Picard-Lefschetz oscillators for Drinfeld-Lafforgue compactifications
16:10-17:10
François Loeser (Univ. Paris 6-7)
Motivic integration and representation theory
July 7
9:00-10:00
Matthew Morrow (Univ. Bonn)
On the deformation theory of algebraic cycles
10:30-11:30
Fedor Bogomolov (Courant Institute, New York/Univ. Nottingham)
On the section conjecture in anabelian geometry
13:15-14:15
Kevin Buzzard (ICL, London)
p-adic Langlands correspondences
14:45-15:45
Masatoshi Suzuki (Tokyo Institute of Technology)
Translation invariant subspaces and GRH for zeta functions
16:00-17:00
Edward Frenkel (Univ. California Berkeley)
"Love and Math", the Langlands programme - Public presentation
July 8
9:15-10:15
Mikhail Kapranov (Kavli IMPU, Tokyo)
Lie algebras and E_n-algebras associated to secondary polytopes
10:45-11:45
Sergey Oblezin (Univ. Nottingham)
Whittaker functions, mirror symmetry and the Langlands correspondence
13:30-14:30
Edward Frenkel (Univ. California Berkeley)
The Langlands programme and quantum dualities
14:40-15:40
Dominic Joyce (Univ. Oxford)
Derived symplectic geometry and categorification
16:10-17:10
Urs Schreiber (Univ. Nijmegen, The Netherlands)
Correspondences of cohesive linear homotopy types and quantization
Universality in numerical computations with random data. Case studies
Abstract
Universal fluctuations are shown to exist when well-known and widely used numerical algorithms are applied with random data. Similar universal behavior is shown in stochastic algorithms and algorithms that model neural computation. The question of whether universality is present in all, or nearly all, computation is raised. (Joint work with G.Menon, S.Olver and T. Trogdon.)
Computable Seismology: Imaging the Earth's interior by numerical waveform modeling and inversion
Abstract
Seismology currently undergoes rapid and exciting advances fueled by a simultaneous surge in recorded data (in both quality and quantity), realistic wave-propagation algorithms, and supercomputing capabilities. This enables us to sample parameter spaces of relevance for imaging the Earth's interior 3D structure with fully numerical techniques. Seismic imaging is the prime approach to illuminate and understand global processes such as mantle convection, plate tectonics, geodynamo, the vigorous interior of the Sun, and delivers crucial constraints on our grasp of volcanism, the carbon cycle and seismicity. At local scales, seismic Earth models are inevitable for hydrocarbon exploration, monitoring of flow processes, and natural hazard assessment.
\\
\\
With a slight focus on global-scale applications, I will present the underlying physical model of realistic wave propagation, its numerical discretization and link such forward modeling to updating Earth models by means of inverse modeling. The associated computational burden to solve high-resolution statistical inverse problems with precise numerical techniques is however entirely out of reach for decades to come. Consequently, seismologists need to take approximations in resolution, physics, data and/or inverse methodology. I will scan a number of such end-member approximations, and focus on our own approach to simultaneously treat wave physics realistically across the frequency band while maximizing data usage and allow for uncertainty quantification. This approach is motivated by decisive approximations on the model space for typical Earth structures and linearized inverse theory.
Spiky Forecasting for Spiky Domestic Energy Demand Curves: problems and ideas...
Abstract
Peter Grindrod and Stephen Haben (UoOx)