Fri, 24 Jan 2020

16:00 - 17:00
L1

Nonlinear Waves in Granular Crystals: From Modeling and Analysis to Computations and Experiments

Panos Kevrekidis
(University of Massachusetts)
Further Information

The Mathematical Institute Colloquia are funded in part by the generosity of Oxford University Press.

This Colloquium is supported by a Leverhulme Trust Visiting Professorship award.

Abstract

In this talk, we will provide an overview of results in the setting of granular crystals, consisting of spherical beads interacting through nonlinear elastic spring-like forces. These crystals are used in numerous engineering applications including, e.g., for the production of "sound bullets'' or the examination of bone quality. In one dimension we show that there exist three prototypical types of coherent nonlinear waveforms: shock waves, traveling solitary waves and discrete breathers. The latter are time-periodic, spatially localized structures. For each one, we will analyze the existence theory, presenting connections to prototypical models of nonlinear wave theory, such as the Burgers equation, the Korteweg-de Vries equation and the nonlinear Schrodinger (NLS) equation, respectively. We will also explore the stability of such structures, presenting some explicit stability criteria for traveling waves in lattices. Finally, for each one of these structures, we will complement the mathematical theory and numerical computations with state-of-the-art experiments, allowing their quantitative identification and visualization. Finally, time permitting, ongoing extensions of these themes will be briefly touched upon, most notably in higher dimensions, in heterogeneous or disordered chains and in the presence of damping and driving; associated open questions will also be outlined.

Fri, 24 Jan 2020

15:00 - 16:00
N3.12

The topology and geometry of molecular conformational spaces and energy landscapes

Ingrid Membrillo-Solis
(University of Southampton)
Abstract

Molecules are dynamical systems that can adopt a variety of three dimensional conformations which, in general, differ in energy and physical properties. The identification of energetically favourable conformations is fundamental in molecular physics and computational chemistry, since it is closely related to important open problems such as the prediction of the folding of proteins and virtual screening for drug design.
In this talk I will present theoretical and data-driven approaches to the study of molecular conformational spaces and their associated energy landscapes. I will show that the topology of the internal molecular conformational space might change after taking its quotient by the group action of a discrete group of symmetries. I will also show that geometric and topological tools for data analysis such as procrustes analysis, local dimensionality reduction, persistent homology and discrete Morse theory provide with efficient methods to study the mathematical structures underlying the molecular conformational spaces and their energy landscapes.
 

Fri, 24 Jan 2020

14:00 - 15:00
L1

Managing Workload - "Orchestrating learning opportunities"

Nick Andrews
Abstract

Taught courses offer a range of distinctive learning opportunities from lectures to tutorials/supervisions through to individual study. Orchestration refers to the combining and sequencing of these opportunities for maximum effect. This raises a question about who does the orchestration. In school, there is a good case for suggesting that it is teachers who take responsibility for orchestration of students’ learning opportunities. Moving to university, do students take on more responsibility for orchestration?

In this session there will be a chance to look back on the learning opportunities you experienced last term and to reflect on how (or even if) they were orchestrated. What could be different in the term ahead if you pay more attention to how distinctive learning opportunities are orchestrated?

Fri, 24 Jan 2020

14:00 - 15:00
L3

Mathematical modelling as part of an HIV clinical trial in sub-Saharan Africa

Dr Will Probert
(Big Data Institute Nuffield Department of Medicine University of Oxford)
Abstract

Globally, almost 38 million people are living with HIV.  HPTN 071 (PopART) is the largest HIV prevention trial to date, taking place in 21 communities in Zambia and South Africa with a combined population of more than 1 million people.  As part of the trial an individual-based mathematical model was developed to help in planning the trial, to help interpret the results of the trial, and to make projections both into the future and to areas where the trial did not take place. In this talk I will outline the individual-based mathematical model used in the trial, the inference framework, and will discuss examples of how the results from the model have been used to help inform policy decisions.  

Fri, 24 Jan 2020

12:00 - 13:00
L4

Tensor methods in optimization

Geovani Grapiglia
(Universidade Federal do Paraná)
Abstract


In this talk we present p-order methods for unconstrained minimization of convex functions that are p-times differentiable with Hölder continuous p-th derivatives. We establish worst-case complexity bounds for methods with and without acceleration. Some of these methods are "universal", that is, they do not require prior knowledge of the constants that define the smoothness level of the objective function. A lower complexity bound for this problem class is also obtained. This is a joint work with Yurii Nesterov (Université Catholique de Louvain).
 

Thu, 23 Jan 2020

16:00 - 17:00
L5

Efficient congruence and discrete restriction for (x,x^3)

Kevin Hughes
(University of Bristol)
Abstract

We will outline the main features of Wooley's efficient congruencing method for the parabola. Then we will go on to prove new bounds for discrete restriction to the curve (x,x^3). The latter is joint work with Trevor Wooley (Purdue).

Thu, 23 Jan 2020

16:00 - 17:30
L3

Thermal Fluctuations in Free Surface Nanoflows

James Sprittles
(University of Warwick)
Abstract

The Navier-Stokes paradigm does not capture thermal fluctuations that drive familiar effects such as Brownian motion and are seen to be key to understanding counter-intuitive phenomena in nanoscale interfacial flows.  On the other hand, molecular simulations naturally account for these fluctuations but are limited to exceptionally short time scales. A framework that incorporates thermal noise is provided by fluctuating hydrodynamics, based on the so-called Landau-Lifshitz-Navier-Stokes equations, and in this talk we shall exploit these equations to gain insight into nanoscale free surface flows.  Particular attention will be given to flows with topological changes, such as the coalescence of drops, breakup of jets and rupture of thin liquid films for which both analytic linear stability results and numerical simulations will be presented and compared to the results of molecular dynamics.

Thu, 23 Jan 2020

14:00 - 15:00
L4

Computational boundary element methods with Bempp

Timo Betcke
(UCL)
Abstract

Boundary integral equations are an elegant tool to model and simulate a range of physical phenomena in bounded and unbounded domains.

While mathematically well understood, the numerical implementation (e.g. via boundary element methods) still poses a number of computational challenges, from the efficient assembly of the underlying linear systems up to the fast preconditioned solution in complex applications. In this talk we provide an overview of some of these challenges and demonstrate the efficient implementation of boundary element methods on modern CPU and GPU architectures. As part of the talk we will present a number of practical examples using the Bempp-cl boundary element software, our next generation boundary element package, that has been developed in Python and supports modern vectorized CPU instruction sets and a number of GPU types.

Thu, 23 Jan 2020

13:00 - 14:00
N3.12

Many paths, one maths

Noam Kantor
(University of Oxford)
Abstract

Let's take a step back to understand what it means to use maths in society: Which maths, and whose society? I'll talk about some of the options I've come across, including time I spent at the US Census Bureau, and we will hear your ideas too. We might even crowdsource a document of maths in society opportunities together...

Thu, 23 Jan 2020
12:00
L4

Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law

Simon Schulz
(University of Cambridge)
Abstract

Do classical solutions of the compressible Navier-Stokes equations converge to an entropy solution of their inviscid counterparts, the Euler equations? In this talk we present a result which answers this question affirmatively, in the one-dimensional case, for a particular class of fluids. Specifically, we consider gases that exhibit approximately polytropic behaviour in the vicinity of the vacuum, and that are isothermal for larger values of the density (which we call approximately isothermal gases). Our approach makes use of methods from the theory of compensated compactness of Tartar and Murat, and is inspired by the earlier works of Chen and Perepelitsa, Lions, Perthame and Tadmor, and Lions, Perthame and Souganidis. This is joint work with Matthew Schrecker.

Thu, 23 Jan 2020
11:30
C4

On groups definable in fields with commuting automorphisms

Kaisa Kangas
(Helsinki University)
Abstract

 

We take a look at difference fields with several commuting automorphisms. The theory of difference fields with one distinguished automorphism has a model companion known as ACFA, which Zoe Chatzidakis and Ehud Hrushovski have studied in depth. However, Hrushovski has proved that if you look at fields with two or more commuting automorphisms, then the existentially closed models of the theory do not form a first order model class. We introduce a non-elementary framework for studying them. We then discuss how to generalise a result of Kowalski and Pillay that every definable group (in ACFA) virtually embeds into an algebraic group. This is joint work in progress with Zoe Chatzidakis and Nick Ramsey.

Wed, 22 Jan 2020
16:00
C1

Whitehead graphs in free groups

Ric Wade
(Oxford University)
Abstract

Whitehead published two papers in 1936 on free groups. Both concerned decision problems for equivalence of (sets of) elements under automorphisms. The first focused on primitive elements (those that appear in some basis), the second looked at arbitrary sets of elements. While both of the resulting algorithms are combinatorial, Whitehead's proofs that these algorithms actually work involve some nice manipulation of surfaces in 3-manifolds. We will have a look at how this works for primitive elements. I'll outline some generalizations due to Culler-Vogtmann, Gertsen, and Stallings, and if we have time talk about how it fits in with some of my current work.

Wed, 22 Jan 2020
14:00
N3.12

Complete Homogeneous Symmetric Polynomials

Esteban Gomezllata Marmolejo
((Oxford University))
Abstract

The k-th complete homogeneous symmetric polynomial in m variables hk,m is the sum of all the monomials of degree k in m variables. They are related to the Symmetric powers of vector spaces. In this talk we will present some of their standard properties, some classic combinatorial results using the "stars and bars" argument, as well as an interesting result: the complete homogeneous symmetric polynomial applied to (1+Xi) can be written as a linear combination of complete homogeneous symmetric poynomials in the Xi. To compute the coefficients of this linear combination, we extend the classic "stars and bars" argument.

Tue, 21 Jan 2020
15:00
L3

On the kinematic algebra for BCJ numerators beyond the MHV sector

Gang Chen
(Queen Mary London)
Abstract

The duality between color and kinematics present in scattering amplitudes of Yang-Mills theory strongly suggest the existence of a hidden kinematic Lie algebra that controls the gauge theory. While associated BCJ numerators are known on closed forms to any multiplicity at tree level, the kinematic algebra has only been partially explored for the simplest of four-dimensional amplitudes: up to the MHV sector. In this paper we introduce a framework that allows us to characterize the algebra beyond the MHV sector. This allows us to both constrain some of the ambiguities of the kinematic algebra, and better control the generalized gauge freedom that is associated with the BCJ numerators. Specifically, in this paper, we work in dimension-agnostic notation and determine the kinematic algebra valid up to certain O((εi⋅εj)2) terms that in four dimensions compute the next-to-MHV sector involving two scalars. The kinematic algebra in this sector is simple, given that we introduce tensor currents that generalize standard Yang-Mills vector currents. These tensor currents controls the generalized gauge freedom, allowing us to generate multiple different versions of BCJ numerators from the same kinematic algebra. The framework should generalize to other sectors in Yang-Mills theory.

Tue, 21 Jan 2020
14:30
L5

Nonlinear Subspace Correction Methods

Thomas Roy
(Oxford)
Abstract

Subspace correction (SSC) methods are based on a "divide and conquer" strategy, where a global problem is divided into a sequence of local ones. This framework includes iterative methods such as Jacobi iteration, domain decomposition, and multigrid methods. We are interested in nonlinear PDEs exhibiting highly localized nonlinearities, for which Newton's method can take many iterations. Instead of doing all this global work, nonlinear SSC methods tackle the localized nonlinearities within subproblems. In this presentation, we describe the SSC framework, and investigate combining Newton's method with nonlinear SSC methods to solve a regularized Stefan problem.
 

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph G on n vertices and a graph H, denote by ex(G,H) the maximal number of edges in an H-free subgraph of G. We consider a random graph GG(n,p) where p>C/n, and determine the asymptotic value of ex(G,Ct), for every Alog(n)<t<(1ε)n. The behaviour of ex(G,Ct) can depend substantially on the parity of t. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Tue, 21 Jan 2020
14:00
L5

Vandermonde with Arnoldi

Nick Trefethen
(Oxford)
Abstract

Vandermonde matrices are exponentially ill-conditioned, rendering the familiar “polyval(polyfit)” algorithm for polynomial interpolation and least-squares fitting ineffective at higher degrees. We show that Arnoldi orthogonalization fixes the problem.

Tue, 21 Jan 2020

12:00 - 13:00
C1

Generative models and representational learning on street networks

Mateo Neira
(University College London)
Abstract

Cities are now central to addressing global changes, ranging from climate change to economic resilience. There is a growing concern of how to measure and quantify urban phenomena, and one of the biggest challenges in quantifying different aspects of cities and creating meaningful indicators lie in our ability to extract relevant features that characterize the topological and spatial patterns of urban form. Many different models that can reproduce large-scale statistical properties observed in systems of streets have been proposed, from spatial random graphs to economical models of network growth. However, existing models fail to capture the diversity observed in street networks around the world. The increased availability of street network datasets and advancements in deep learning models present a new opportunity to create more accurate and flexible models of urban street networks, as well as capture important characteristics that could be used in downstream tasks.  We propose a simple approach called Convolutional-PCA (ConvPCA) for both creating low-dimensional representations of street networks that can be used for street network classification and other downstream tasks, as well as a generating new street networks that preserve visual and statistical similarity to observed street networks.

Link to the preprint

Mon, 20 Jan 2020

16:00 - 17:00

The Morse index of Willmore spheres and its relation to the geometry of minimal surfaces

Elena Maeder-Baumdicker
(TU Darmstadt)
Abstract

I will explain what the Willmore Morse Index of unbranched Willmore spheres in Euclidean three-space is and how to compute it. It turns out that several geometric properties at the ends of complete minimal surfaces with embedded planar ends are related to the mentioned Morse index.
One consequence of that computation is that all unbranched Willmore spheres are unstable (except for the round sphere). This talk is based on work with Jonas Hirsch.

 

Mon, 20 Jan 2020
15:45
L6

Algorithms for infinite linear groups: methods and applications

Alla Detinko
(Mathematics Dept., University of Hull)
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

Mon, 20 Jan 2020

15:45 - 16:45
L3

Recent developments in random geometry

JEAN-FRANCOIS LE GALL
(Universite Paris-Sud)
Abstract

We discuss the models of random geometry that are derived
from scaling limits of large graphs embedded in the sphere and
chosen uniformly at random in a suitable class. The case of
quadrangulations with a boundary leads to the so-called
Brownian disk, which has been studied in a number of recent works.
We present a new construction of the Brownian
disk from excursion theory for Brownian motion indexed
by the Brownian tree. We also explain how the structure
of connected components of the Brownian disk above a
given height gives rise to a remarkable connection with
growth-fragmentation processes.