Mon, 17 Dec 2012

16:30 - 17:30

Astor Lecture: The homotopy groups of spheres

Michael Hopkins
(Harvard University, USA)
Abstract

I will describe the history of the homotopy groups of spheres, and some of the many different roles they have come to play in mathematics.

Fri, 14 Dec 2012
16:00
L3

Some results and questions concerning lattices in totally disconnected groups

Tsachik Gelander
(Jersulem)
Abstract

I'll discuss some results about lattices in totally
disconnected locally compact groups, elaborating on the question:
which classical results for lattices in Lie groups can be extended to
general locally compact groups. For example, in contrast to Borel's
theorem that every simple Lie group admits (many) uniform and
non-uniform lattices, there are totally disconnected simple groups
with no lattices. Another example concerns with the theorem of Mostow
that lattices in connected solvable Lie groups are always uniform.
This theorem cannot be extended for general locally compact groups,
but variants of it hold if one implants sufficient assumptions. At
least 90% of what I intend to say is taken from a paper and an
unpublished preprint written jointly with P.E. Caprace, U. Bader and
S. Mozes. If time allows, I will also discuss some basic properties
and questions regarding Invariant Random Subgroups.

Fri, 14 Dec 2012
14:15
L3

Deformations and rigidity of lattices in soluble Lie groups

Benjamin Klopsch
(RHUL and Magdeburg)
Abstract

Let G be a simply connected, solvable Lie group and Γ a lattice in G. The deformation space D(Γ,G) is the orbit space associated to the action of Aut(G) on the space X(Γ,G) of all lattice embeddings of Γ into G. Our main result generalises the classical rigidity theorems of Mal'tsev and Saitô for lattices in nilpotent Lie groups and in solvable Lie groups of real type. We prove that the deformation space of every Zariski-dense lattice Γ in G is finite and Hausdorff, provided that the maximal nilpotent normal subgroup of G is connected.  I will introduce all necessary notions and try to motivate and explain this result.

Fri, 14 Dec 2012
13:00
L3

Cayley graphs of Fuchsian surface groups versus hyperbolic graphs

Caroline Series
(Warwick)
Abstract

Most results about the Cayley graph of a hyperbolic surface group can be replicated in the context of more general hyperbolic groups. In this talk I will discuss two results about such Cayley graphs which I do not know how to replicate in the more general context.

Fri, 14 Dec 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Victor Burlakov - Understanding the growth of alumina nanofibre arrays
  • Brian Duffy - Measuring visual complexity of cluster-based visualisations
  • Chris Bell - Autologous chemotaxis due to interstitial flow
Thu, 13 Dec 2012

12:00 - 13:00
Gibson 1st Floor SR

Two nonlinear wave equations with conformal invariance

Po Lam Yung
(Rutgers University)
Abstract

In this talk, we will look at two non-linear wave equations in 2+1 dimensions, whose elliptic parts exhibit conformal invariance.

These equations have their origins in prescribing the Gaussian and mean curvatures respectively, and the goal is to understand well-posedness, blow-up and bubbling for these equations.

This is a joint work with Sagun Chanillo.

Thu, 06 Dec 2012

17:00 - 18:00
L3

An application of proof theory to lattice-ordered groups

George Metcalfe
(Bern)
Abstract

(Joint work with Nikolaos Galatos.) Proof-theoretic methods provide useful tools for tackling problems for many classes of algebras. In particular, Gentzen systems admitting cut-elimination may be used to establish decidability, complexity, amalgamation, admissibility, and generation results for classes of residuated lattices corresponding to substructural logics. However, for classes of algebras bearing a family resemblance to groups, such methods have so far met only with limited success. The main aim of this talk will be to explain how proof-theoretic methods can be used to obtain new syntactic proofs of two core theorems for the class of lattice-ordered groups: namely, Holland's result that this class is generated as a variety by the lattice-ordered group of order-preserving automorphisms of the real numbers, and the decidability of the word problem for free lattice-ordered groups.

Mon, 03 Dec 2012
00:00
SR2

Cutting sequences and Bouw-Möller surfaces

Diana Davis
(Brown University)
Abstract

We will start with the square torus, move on to all regular polygons, and then look at a large family of flat surfaces called Bouw-Möller surfaces, made by gluing together many polygons. On each surface, we will consider the action of a certain shearing action on geodesic paths on the surface, and a certain corresponding sequence.

Fri, 30 Nov 2012

16:00 - 17:00
Gibson Grd floor SR

Multillevel Weiner-Hopf Monte Carlo and Euler-Poisson schemes for L\'evy processes

Albert Ferreiro-Castilla
(University of Bath)
Abstract

In Kuznetsov et al. (2011) a new Monte Carlo simulation technique was introduced for a large family of L\'evy processes that is based on the Wiener-Hopf decomposition. We pursue this idea further by combining their technique with the recently introduced multilevel Monte Carlo methodology. We also provide here a theoretical analysis of the new Monte Carlo simulation technique in Kuznetsov et al. (2011) and of its multilevel variant. We find that the rate of convergence is uniformly with respect to the ``jump activity'' (e.g. characterised by the Blumenthal-Getoor index).

Fri, 30 Nov 2012

14:30 - 15:30
DH 3rd floor SR

Constructing plankton ecologies (and the library of Lotka)

Dr John Norbury
(Mathematical Insitute, Oxford)
Abstract

Mesocosm experiments provide a major test bed for models of plankton, greenhouse gas export to the atmosphere, and changes to ocean acidity, nitrogen and oxygen levels. A simple model of a mesocosm plankton ecology is given in terms of a set of explicit natural population dynamics rules that exactly conserve a key nutrient. These rules include many traditional population dynamics models ranging from Lotka-Volterra systems to those with more competitors and more trophic levels coupled by nonlinear processes. The rules allow a definition of an ecospace and an analysis of its behaviour in terms of equilibrium points on the ecospace boundary.

Ecological issues such as extinctions, plankton bloom succession, and system resilience can then be analytically studied. These issues are understood from an alternative view point to the usual search for interior equilibrium points and their classification, coupled with intensive computer simulations. Our approach explains why quadratic mortality usually stabilises large scale simulation, but needs to be considered carefully when developing the next generation of Earth System computer models. The ‘Paradox of the Plankton’ and ‘Invasion Theory’ both have alternative, yet straightforward explanations within these rules.

Thu, 29 Nov 2012

17:00 - 18:00
L3

Valued difference fields and NTP2

Martin Hils
(Paris)
Abstract

(Joint work with Artem Chernikov.) In the talk, we will first recall some basic results on valued difference fields, both from an algebraic and from a model-theoretic point of view. In particular, we will give a description, due to Hrushovski, of the theory VFA of the non-standard Frobenius acting on an algebraically closed valued field of residue characteristic 0, as well as an Ax-Kochen-Ershov type result for certain valued difference fields which was proved by Durhan. We will then present a recent work where it is shown that VFA does not have the tree property of the second kind (i.e., is NTP2); more generally, in the context of the Ax-Kochen-Ershov principle mentioned above, the valued difference field is NTP2 iff both the residue difference field and the value difference group are NTP2. The property NTP2 had already been introduced by Shelah in 1980, but only recently it has been shown to provide a fruitful ‘tameness’ assumption, e.g. when dealing with independence notions in unstable NIP theories (work of Chernikov-Kaplan).

Thu, 29 Nov 2012

16:00 - 17:00
Gibson Grd floor SR

Composition law of periodic orbits in discrete dynamical systems

Jesús San Martin
(Universidad Politécnica de Madrid)
Abstract

The periodic orbits of a discrete dynamical system can be described as

permutations. We derive the composition law for such permutations. When

the composition law is given in matrix form the composition of

different periodic orbits becomes remarkably simple. Composition of

orbits in bifurcation diagrams and decomposition law of composed orbits

follow directly from that matrix representation.

Thu, 29 Nov 2012

15:00 - 16:00
SR1

Hamiltonian evolution of half-flat SU(3) structures

Thomas Madsen
(King's College London)
Abstract

This talk surveys the well known relationship between half-flat SU(3) structures on 6-manifolds M and metrics with holonomy in G_2 on Mx(a,b), focusing on the case in which M=S3xS3 with solutions invariant by SO(4).

Thu, 29 Nov 2012

14:00 - 15:00
L3

Borcherds-Kac-Moody algebras and Langlands interpolation

Alexandre Bouayad
Abstract

We introduce a deformation process of universal enveloping algebras of Borcherds-Kac-Moody algebras, which generalises quantum groups' one and yields a large class of new algebras called coloured Borcherds-Kac-Moody algebras. The direction of deformation is specified by the choice of a collection of numbers. For example, the natural numbers lead to classical enveloping algebras, while the quantum numbers lead to quantum groups. We prove, in the finite type case, that every coloured BKM algebra have representations which deform representations of semisimple Lie algebras and whose characters are given by the Weyl formula. We prove, in the finite type case, that representations of two isogenic coloured BKM algebras can be interpolated by representations of a third coloured BKM algebra. In particular, we solve conjectures of Frenkel-Hernandez about the Langland duality between representations of quantum groups. We also establish a Langlands duality between representations of classical BKM algebras, extending results of Littelmann and McGerty, and we interpret this duality in terms of quantum interpolation.

Thu, 29 Nov 2012

14:00 - 15:00
Gibson Grd floor SR

A locally adaptive Cartesian finite-volume framework for solving PDEs on surfaces

Dr Donna Calhoun
(Boise State University)
Abstract

We describe our current efforts to develop finite volume

schemes for solving PDEs on logically Cartesian locally adapted

surfaces meshes. Our methods require an underlying smooth or

piecewise smooth grid transformation from a Cartesian computational

space to 3d surface meshes, but does not rely on analytic metric terms

to obtain second order accuracy. Our hyperbolic solvers are based on

Clawpack (R. J. LeVeque) and the parabolic solvers are based on a

diamond-cell approach (Y. Coudi\`ere, T. Gallou\"et, R. Herbin et

al). If time permits, I will also discuss Discrete Duality Finite

Volume methods for solving elliptic PDEs on surfaces.

\\

\\

To do local adaption and time subcycling in regions requiring high

spatial resolution, we are developing ForestClaw, a hybrid adaptive

mesh refinement (AMR) code in which non-overlapping fixed-size

Cartesian grids are stored as leaves in a forest of quad- or

oct-trees. The tree-based code p4est (C. Burstedde) manages the

multi-block connectivity and is highly scalable in realistic

applications.

\\

\\

I will present results from reaction-diffusion systems on surface

meshes, and test problems from the atmospheric sciences community.

Thu, 29 Nov 2012

13:00 - 15:00
DH 1st floor SR

How local is a local martingale diffusion?

Martin Klimmek
Abstract

Our starting point is a recent characterisation of one-dimensional, time-homogeneous diffusion in terms of its distribution at an exponential time. The structure of this characterisation leads naturally to the idea of measuring `how far' a diffusion is away from being a martingale diffusion in terms of expected local time at the starting point. This work in progress has a connection to finance and to

a Skorokhod embedding.

Wed, 28 Nov 2012

16:00 - 17:00
SR2

Engulfed subgroups of discrete groups

Will Cavendish
(University of Oxford)
Abstract

A subgroup $H$ of a group $G$ is said to be engulfed if there is a
finite-index subgroup $K$ other than $G$ itself such that $H<K$, or
equivalently if $H$ is not dense in the profinite topology on $G$.  In
this talk I will present a variety of methods for showing that a
subgroup of a discrete group is engulfed, and demonstrate how these
methods can be used to study finite-sheeted covering spaces of
topological spaces.

Tue, 27 Nov 2012

17:00 - 18:00
Gibson 1st Floor SR

Relaxation of a Generalized Willmore Functional

Simon Masnou
(Universit&eacute; Lyon 1)
Abstract

Several shape optimization problems, e.g. in image processing, biology, or discrete geometry, involve the Willmore functional, which is for a surface the integrated squared mean curvature. Due to its singularity, minimizing this functional under constraints is a delicate issue. More precisely, it is difficult to characterize precisely the structure of the minimizers and to provide an explicit

formulation of their energy. In a joint work with Giacomo Nardi (Paris-Dauphine), we have studied an "integrated" version of the Willmore functional, i.e. a version defined for functions and not only for sets. In this talk, I will describe the tools, based on Young measures and varifolds, that we have introduced to address the relaxation issue. I will also discuss some connections with the phase-field numerical approximation of the Willmore flow, that we have investigated with Elie Bretin (Lyon) and Edouard Oudet (Grenoble).

Tue, 27 Nov 2012
17:00
L2

'Orbit coherence in permutation groups'

Mark Wildon
(Royal Holloway)
Abstract

Let G be a permutation group acting on a set Omega. For g in G, let pi(g) denote the partition of Omega given by the orbits of g. The set of all partitions of Omega is naturally ordered by refinement and admits lattice operations of meet and join. My talk concerns the groups G such that the partitions pi(g) for g in G form a sublattice. This condition is highly restrictive, but there are still many interesting examples. These include centralisers in the symmetric group Sym(Omega) and a class of profinite abelian groups which act on each of their orbits as a subgroup of the Prüfer group. I will also describe a classification of the primitive permutation groups of finite degree whose set of orbit partitions is closed under taking joins, but not necessarily meets.

This talk is on joint work with John R. Britnell (Imperial College).

Tue, 27 Nov 2012

15:45 - 16:45
SR1

Formality of ordinary and twisted de Rham complex from derived algebraic geometry

Andrei Caldararu
(University of Wisconsin)
Abstract

Beautiful results of Deligne-Illusie, Sabbah, and Ogus-Vologodsky show that certain modifications of the de Rham complex (either the usual one, or twisted versions of it that appear in the study of the cyclic homology of categories of matrix factorizations) are formal in positive characteristic. These are the crucial steps in proving algebraic analogues of the Hodge theorem (again, either in the ordinary setting or in the presence of a twisting). I will present these results along with a new approach to understanding them using derived intersection theory. This is joint work with Dima Arinkin and Marton Hablicsek.

Tue, 27 Nov 2012
14:30
SR1

The hitting time of rainbow connectivity two

Annika Heckel
(Oxford)
Abstract

Rainbow connectivity is a new concept for measuring the connectivity of a graph which was introduced in 2008 by Chartrand, Johns, McKeon and Zhang. In a graph G with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of G so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G) of the graph G.

For any graph G, rc(G) >= diam(G). We will discuss rainbow connectivity in the random graph setting and present the result that for random graphs, rainbow connectivity 2 happens essentially at the same time as diameter 2. In fact, in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide

Tue, 27 Nov 2012

13:15 - 13:45
DH 3rd floor SR

The Mechanics of Multitubes

Stephen O'Keeffe
Abstract

Multi-layered cylinders, or 'multitubes', are ubiquitous throughout the biological world, from microscopic axons to plant stems. Whilst these structures share an underlying common geometry, each one fulfils a different key role in its relevant environment. For example plant stems provide a transport network for nutrients within the organism, whilst the tongue of a chameleon is used for prey capture. This talk will be concerned with the mechanical stability of multitubes. How do the material properties, applied tractions and geometry of elastic rods and tubes influence their critical buckling pressure and mode of buckling? We will discuss the phenomenon of differential growth, an important factor in the mechanical behaviour of such systems and introduce a mathematical framework, which can be used to model differential growth in soft tissues and predict the onset of buckling. We will also present a small number of applications for this research.

Mon, 26 Nov 2012

16:00 - 17:00
SR1

Once Upon a Time in Egypt: How the Story of Rational Points Began

Simon Myerson
(Oxford)
Abstract

A nice bed-time story to end the term. It is often said that ideas like the group law or isogenies on elliptic curves were 'known to Fermat' or are 'found
in Diophantus', but this is rarely properly explained. I will discuss the first work on rational points on curves from the point of view of modern number
theory, asking if it really did anticipate the methods we use today.

Mon, 26 Nov 2012

15:45 - 16:45
L3

A polynomial upper bound on Reidemeister moves

Marc Lackenby
(Oxford)
Abstract

Consider a diagram of the unknot with c crossings. There is a

sequence of Reidemeister

moves taking this to the trivial diagram. But how many moves are required?

In my talk, I will give

an overview of my recent proof that there is there is an upper bound on the

number of moves, which

is a polynomial function of c.

Mon, 26 Nov 2012

15:45 - 16:45
Oxford-Man Institute

tbc

Karol Szczypkowski
Abstract
Mon, 26 Nov 2012
14:15
L3

Geometry and topology of superfluid liquids

Michael Monastyrsky
(ITEP)
Abstract

The lecture will discuss some applications of topology to a number of interesting physical systems:

1. Classifications of Phases, 2. Classifications of one-dimensional textures in Nematics and Superfluid HE-3,

3. Classification of defects, 4. Phase transition in Liquid membranes.

The solution of these problems leads to interesting mathematics but the talk will also include some historical remarks.

Mon, 26 Nov 2012

14:15 - 15:15
Oxford-Man Institute

Fractional Laplacian with gradient perturbations

Tomasz Jakubowski
Abstract

We consider the fractional Laplacian perturbed by the gradient operator b(x)\nabla for various classes of vector fields b. We construct end estimate the corresponding semigroup.

Mon, 26 Nov 2012

12:00 - 13:00
L3

Scanning for stabilizing bundles in heterotic vacua

James Gray
(LMU Munich)
Abstract
I will describe methods for searching for bundles which are only holomorphic for isolated complex structures of a base Calabi-Yau threefold. These can be used, in the hidden sector of heterotic compactifications, to stabilize the associated moduli fields. Various bundle constructions will be covered, and the possibility and consequences of resolving the potentially singular threefolds which result will be discussed. If time permits, I will also briefly mention a large set of Calabi-Yau fourfolds which is currently being classified.
Fri, 23 Nov 2012

16:00 - 17:00
DH 1st floor SR

Exact Implied Volatility Expansions

Matt Lorig
(Princeton University)
Abstract

We derive an exact implied volatility expansion for any model whose European call price can be expanded analytically around a Black-Scholes call price. Two examples of our framework are provided (i) exponential Levy models and (ii) CEV-like models with local stochastic volatility and local stochastic jump-intensity.

Fri, 23 Nov 2012

12:00 - 13:00
Gibson 1st Floor SR

$\chi$-Systems for Correlation Functions

Jonathan Toledo
(Perimeter Institute)
Abstract
We consider the strong coupling limit of 4-point functions of heavy operators in N=4 SYM dual to strings with no spin in AdS. We restrict our discussion for operators inserted on a line. The string computation factorizes into a state-dependent sphere part and a universal AdS contribution which depends only on the dimensions of the operators and the cross ratios. We use the integrability of the AdS string equations to compute the AdS part for operators of arbitrary conformal dimensions. The solution takes the form of TBA-like integral equations with the minimal AdS string-action computed by a corresponding free-energy-like functional. These TBA-like equations stem from a peculiar system of functional equations which we call a \chi-system. In principle one could use the same method to solve for the AdS contribution in the N-point function. An interesting feature of the solution is that it encodes multiple string configurations corresponding to different classical saddle-points. The discrete data that parameterizes these solutions enters through the analog of the chemical-potentials in the TBA-like equations. Finally, for operators dual to strings spinning in the same equator in S^5 (i.e. BPS operators of the same type) the sphere part is simple to compute. In this case (which is generically neither extremal nor protected) we can construct the complete, strong-coupling 4-point function.
Fri, 23 Nov 2012

10:00 - 11:30
DH 1st floor SR

Virtual Anglo-Saxons. Agent-based modelling in archaeology and palaeodemography

Andreas Duering
(Archaeology, Oxford)
Abstract

The University of Oxford’s modelling4all software is a wonderful tool to simulate early medieval populations and their cemeteries in order to evaluate the influence of palaeodemographic variables, such as mortality, fertility, catastrophic events and disease on settlement dispersal. In my DPhil project I will study archaeological sites in Anglo-Saxon England and the German south-west in a comparative approach. The two regions have interesting similarities in their early medieval settlement pattern and include some of the first sites where both cemeteries and settlements were completely excavated.

An important discovery in bioarchaeology is that an excavated cemetery is not a straightforward representation of the living population. Preservation issues and the limitations of age and sex estimation methods using skeletal material must be considered. But also the statistical procedures to calculate the palaeodemographic characteristics of archaeological populations are procrustean. Agent-based models can help archaeologists to virtually bridge the chasm between the excavated dead populations and their living counterparts in which we are really interested in.

This approach leads very far away from the archaeologist’s methods and ways of thinking and the major challenge therefore is to balance innovative ideas with practicability and tangibility.

Some of the problems for the workshop are:

1.) Finding the best fitting virtual living populations for the excavated cemeteries

2.) Sensitivity analyses of palaeodemographic variables

3.) General methodologies to evaluate the outcome of agent based models

4.) Present data in a way that is both statistically correct and up to date & clear for archaeologists like me

5.) Explore how to include analytical procedures in the model to present the archaeological community with a user-friendly and not necessarily overwhelming toolkit

 

Thu, 22 Nov 2012

17:00 - 18:00
L3

A non-desarguesian projective plane of analytic origin

Boris Zilber
(Oxford)
Abstract
(This is a joint result with Katrin Tent.) We construct a series of new omega-stable non-desarguesian projective planes, including ones of Morley rank 2, 
avoiding a direct use of Hrushovski's construction. Instead we make use of the field of complex numbers with a holomorphic function  (Liouville function) which is an omega-stable structure by results of A.Wilkie and P.Koiran.  We first find a pseudo-plane interpretable in the above analytic structure and then "collapse" the pseudo-plane to a projective plane applying a modification of Hrushovski's mu-function. 
Thu, 22 Nov 2012

16:00 - 17:00
DH 1st floor SR

An Energy model for the mechanically driven unfolding of titin macromolecules

Giuseppe Saccomandi
(Universita' degli Studi Perugia)
Abstract

We propose a model to reproduce qualitatively and quantitatively the experimental behavior obtained by the AFM techniques for the titin. Via an energetic based minimization approach we are able to deduce a simple analytical formulations for the description of the mechanical behavior of multidomain proteins, giving a physically base description of the unfolding mechanism. We also point out that our model can be inscribed in the led of the pseudo-elastic variational damage model with internal variable and fracture energy criteria of the continuum mechanics. The proposed model permits simple analytical calculations and

to reproduce hard-device experimental AFM procedures. The proposed model also permits the continuum limit approximation which maybe useful to the development of a three-dimensional multiscale constitutive model for biological tissues.

Thu, 22 Nov 2012

15:00 - 16:00
SR1

Teichmüller Curves in TQFT

Shehryar Sikander
(Aarhus University)
Abstract

In this talk we show how Teichmüller curves can be used to compute

quantum invariants of certain Pseudo-Anasov mapping tori. This involves

computing monodromy of the Hitchin connection along closed geodesics of

the Teichmüller curve using iterated integrals. We will mainly focus on

the well known Teichmüller curve generated by a pair of regular

pentagons. This is joint work with J. E. Andersen.

Thu, 22 Nov 2012

14:00 - 15:00
L3

Cherednik algebras for curves and deformed preprojective algebras

Dr Oleg Chalykh
Abstract

To any complex smooth variety Y with an action of a finite group G, Etingof associates a global Cherednik algebra. The usual rational Cherednik algebra corresponds to the case of Y= C^n and a finite Coxeter group G

Thu, 22 Nov 2012

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Domain decomposition for total variation regularisation and applications

Dr Carola-Bibiane Schönlieb
(DAMTP, University of Cambridge)
Abstract

Domain decomposition methods were introduced as techniques for solving partial differential equations based on a decomposition of the spatial domain of the problem into several subdomains. The initial equation restricted to the subdomains defines a sequence of new local problems. The main goal is to solve the initial equation via the solution of the local problems. This procedure induces a dimension reduction which is the major responsible of the success of such a method. Indeed, one of the principal motivations is the formulation of solvers which can be easily parallelized.

In this presentation we shall develop a domain decomposition algorithm to the minimization of functionals with total variation constraints. In this case the interesting solutions may be discontinuous, e.g., along curves in 2D. These discontinuities may cross the interfaces of the domain decomposition patches. Hence, the crucial difficulty is the correct treatment of interfaces, with the preservation of crossing discontinuities and the correct matching where the solution is continuous instead. I will present our domain decomposition strategy, including convergence results for the algorithm and numerical examples for its application in image inpainting and magnetic resonance imaging.

Thu, 22 Nov 2012

13:00 - 15:00
DH 1st floor SR

Self referential options

Jeff Dewynn
Abstract

A number of pricing models for electricity and carbon credit pricing involve nonlinear dependencies between two, or more, of the processes involved; for example, the models developed by Schwarz and Howison. The consequences of these nonlinearities are not well understood.

In this talk I will discuss some much simpler models, namely options whose values are defined self-referentially, which have been looked at in order to better understand the effects of these non-linear dependencies.

Wed, 21 Nov 2012
16:00
SR2

Magnus QI: the motion picture, featuring the Magnus embedding

Andrew Sale
(University of Oxford)
Abstract

Let F be a free group, and N a normal subgroup of F with derived subgroup N'. The Magnus embedding gives a way of seeing F/N' as a subgroup of a wreath product of a free abelian group over over F/N. The aim is to show that the Magnus embedding is a quasi-isometric embedding (hence "Q.I." in the title). For this I will use an alternative geometric definition of the embedding (hence "picture"), which I will show is equivalent to the definition which uses Fox calculus. Please note that we will assume no prior knowledge of calculus.

Tue, 20 Nov 2012
17:00
L2

"Nielsen equivalence and groups whose profinite genus is infinite"

Martin Bridson
(Oxford)
Abstract

In our 2004 paper, Fritz Grunewald and I constructed the first
pairs of finitely presented, residually finite groups $u: P\to G$
such that $P$ is not isomorphic to $G$ but the map that $u$ induces on
profinite completions is an isomorphism. We were unable to determine if
there might exist finitely presented, residually finite groups $G$ that
with infinitely many non-isomorphic finitely presented subgroups $u_n:
P_n\to G$ such that $u_n$ induces a profinite isomorphism. I shall
discuss how two recent advances in geometric group theory can be used in
combination with classical work on Nielsen equivalence to settle this
question.