16:00
Haken's algorithm for recognising the unknot
Abstract
I will discuss the basics of normal surface theory, and how they were used to give an algorithm for deciding whether a given diagram represents the unknot. This version is primarily based on Haken's work, with simplifications from Schubert and Jaco-Oertel.
11:00
The Monoidal Marriage of Stucture and Physics
Abstract
What does abstract nonsense (category theory) have to do with the apparently opposite proverbial concreteness of physics? In this talk I will try to convey the importance of understanding physical theories from a compositional and structural perspective, where the fundamental logic of interaction between systems becomes the real protagonist. Firstly, we will see how different classes of symmetric monoidal categories can be used to model physical processes in a very natural and intuitive way. We will then explore the claim that category theory is not only useful in providing a unified framework, but it can be also used to perfect and modify preexistent models. In this direction, I will show how the introduction of a trace in the symmetric monoidal category describing QIT can be used to talk about quantum interactions induced by cyclic causal relationships.
16:00
Definably simple groups in valued fields
Abstract
I will discuss joint work with Gismatullin, Halupczok, and Simonetta on the following problem: given a henselian valued field of characteristic 0, possibly equipped with analytic structure (in the sense stemming originally from Denef and van den Dries), describe the possibilities for a definable group G in the valued field sort which is definably almost simple, that is, has no proper infinite definable normal subgroups. We also have results for an algebraically closed valued field K in characteristic p, but assuming also that the group is a definable subgroup of GL(n, K).
A Steenrod-square-type operation for quantum cohomology and Floer theory
Abstract
The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.
15:30
Mixed methods for stress-assisted diffusion problems
Abstract
In this talk I will introduce a new mathematical model for the computational modelling of the active contraction of cardiac tissue using stress-assisted conductivity as the main mechanism for mechanoelectrical feedback. The coupling variable is the Kirchhoff stress and so the equations of hyperelasticity are written in mixed form and a suitable finite element formulation is proposed. Next I will introduce a simplified version of the coupled system, focusing on its analysis in terms of solvability and stability of continuous and discrete mixed-primal formulations, and the convergence of these methods will be illustrated through two numerical tests.
14:30
On the rational Turán exponents conjecture
Abstract
The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.
We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.
This is joint work with Jaehoon Kim and Hong Liu.
14:15
A Beilinson-Bernstein Theorem for p-adic analytic quantum groups
Abstract
The celebrated localisation theorem of Beilinson-Bernstein asserts that there is an equivalence between representations of a Lie algebra and modules over the sheaf of differential operators on the corresponding flag variety. In this talk we discuss certain analogues of this result in various contexts. Namely, there is a localisation theorem for quantum groups due to Backelin and Kremnizer and, more recently, Ardakov and Wadsley also proved a localisation theorem working with certain completed enveloping algebras of p-adic Lie algebras. We then explain how to combine the ideas involved in these results to construct
a p-adic analytic quantum flag variety and a category of D-modules on it, and we show that the global section functor on these D-modules yields an equivalence of categories.
A block preconditioner for non-isothermal flow in porous media
Abstract
In petroleum reservoir simulation, the standard preconditioner is a two-stage process which involves solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. For this model, we develop a block preconditioner with an efficient Schur complement approximation. Then, we extend this method for multiphase flow as a two-stage preconditioner.
A PDE construction of the Euclidean $\Phi^4_3$ quantum field theory
Abstract
We present a self-contained construction of the Euclidean $\Phi^4$ quantum
field theory on $\mathbb{R}^3$ based on PDE arguments. More precisely, we
consider an approximation of the stochastic quantization equation on
$\mathbb{R}^3$ defined on a periodic lattice of mesh size $\varepsilon$ and
side length $M$. We introduce an energy method and prove tightness of the
corresponding Gibbs measures as $\varepsilon \rightarrow 0$, $M \rightarrow
\infty$. We show that every limit point satisfies reflection positivity,
translation invariance and nontriviality (i.e. non-Gaussianity). Our
argument applies to arbitrary positive coupling constant and also to
multicomponent models with $O(N)$ symmetry. Joint work with Massimiliano
Gubinelli.
12:00
Epidemic processes in multilayer networks
Abstract
Disease transmission and rumour spreading are ubiquitous in social and technological networks. In this talk, we will present our last results on the modelling of rumour and disease spreading in multilayer networks. We will derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks in a multiplex network. Moreover, we will introduce a model of epidemic spreading with awareness, where the disease and information are propagated in different layers with different time scales. We will show that the time scale determines whether the information awareness is beneficial or not to the disease spreading.
Higher Regularity of the p-Poisson Equation in the Plane
Abstract
In recent years it has been discovered that also non-linear, degenerate equations like the $p$-Poisson equation $$ -\mathrm{div}(A(\nabla u))= - \mathrm{div} (|\nabla u|^{{p-2}}\nabla u)= -{\rm div} F$$ allow for optimal regularity. This equation has similarities to the one of power-law fluids. In particular, the non-linear mapping $F \mapsto A(\nabla u)$ satisfies surprisingly the linear, optimal estimate $\|A(\nabla u)\|_X \le c\, \|F\|_X$ for several choices of spaces $X$. In particular, this estimate holds for Lebesgue spaces $L^q$ (with $q \geq p'$), spaces of bounded mean oscillations and Holder spaces$C^{0,\alpha}$ (for some $\alpha>0$).
In this talk we show that we can extend this theory to Sobolev and Besov spaces of (almost) one derivative. Our result are restricted to the case of the plane, since we use complex analysis in our proof. Moreover, we are restricted to the super-linear case $p \geq 2$, since the result fails $p < 2$. Joint work with Anna Kh. Balci, Markus Weimar.
Stationary black holes with negative cosmological constant
Abstract
I will present a construction of large families of singularity-free stationary solutions of Einstein equations, for a large class of matter models including vacuum, with a negative cosmological constant. The solutions, which are of course real-valued Lorentzian metrics, are determined by a set of free data at conformal infinity, and the construction proceeds through elliptic equations for complex-valued tensor fields. One thus obtains infinite dimensional families of both strictly stationary spacetimes and black hole spacetimes.
15:45
Random triangular Burnside groups
Abstract
In this talk I will discuss recent joint work with Dominik Gruber where
we find a reasonable model for random (infinite) Burnside groups,
building on earlier tools developed by Coulon and Coulon-Gruber.
The free Burnside group with rank r and exponent n is defined to be the
quotient of a free group of rank r by the normal subgroup generated by
all elements of the form g^n; quotients of such groups are called
Burnside groups. In 1902, Burnside asked whether any such groups could
be infinite, but it wasn't until the 1960s that Novikov and Adian showed
that indeed this was the case for all large enough odd n, with later
important developments by Ol'shanski, Ivanov, Lysenok and others.
In a different direction, when Gromov developed the theory of hyperbolic
groups in the 1980s and 90s, he observed that random quotients of free
groups have interesting properties: depending on exactly how one chooses
the number and length of relations one can typically gets hyperbolic
groups, and these groups are infinite as long as not too many relations
are chosen, and exhibit other interesting behaviour. But one could
equally well consider what happens if one takes random quotients of
other free objects, such as free Burnside groups, and that is what we
will discuss.
Fast-slow systems driven by slowly mixing deterministic dynamics.
Abstract
I will talk about R^n valued random processes driven by a "noise", which is generated by a deterministic dynamical system, randomness coming from the choice of the initial condition.
Such processes were considered by D.Kelly and I.Melbourne.I will present our joint work with I.Chevyrev, P.Friz, I.Melbourne and H.Zhang, where we consider the noise with long term memory. We prove convergence to solution of a stochastic differential equation which is, depending on the noise, driven by either a Brownian motion (optimizing the assumptions of Kelly-Melbourne) or a Lévy process.Our work is made possible by recent progress in rough path theory for càdlàg paths in p-variation topology.
Zed-hat
Abstract
The goal of the talk will be to introduce a class of functions that answer a question in topology, can be computed via analytic methods more common in the theory of dynamical systems, and in the end turn out to enjoy beautiful modular properties of the type first observed by Ramanujan. If time permits, we will discuss connections with vertex algebras and physics of BPS states which play an important role, but will be hidden "under the hood" in much of the talk.
Hedging derivatives under market frictions using deep learning techniques
Abstract
We consider the problem of optimally hedging a portfolio of derivatives in a scenario based discrete-time market with transaction costs. Risk-preferences are specified in terms of a convex risk-measure. Such a framework has suffered from numerical intractability up until recently, but this has changed thanks to technological advances: using hedging strategies built from neural networks and machine learning optimization techniques, optimal hedging strategies can be approximated efficiently, as shown by the numerical study and some theoretical results presented in this talk (based on joint work with Hans Bühler, Ben Wood and Josef Teichmann).
Mathematrix lunches - Joined with Mirzakhani society
Abstract
This week is a women's only week in which we are joined by the Mirzakhani society, the society for undergraduate women in maths, for lunch.
12:45
Tinkertoys for E₈ (and related matters)
Abstract
I will review some recent progress on D=4, N=2 superconformal field theories in what has come to be known as "Class-S". This is a huge class of (mostly non-Lagrangian) SCFTs, whose properties are encoded in the data of a punctured Riemann surface and a collection (one per puncture) of nilpotent orbits in an ADE Lie algebra.
16:00
3 minute thesis competition
Abstract
How much do you know actually about the research that is going on across the department? The SIAM Student Chapter brings you a 3 minute thesis competition challenging a group of DPhil students to go head to head to explain their research in just 3 minutes with the aid of a single slide. This is the perfect opportunity to hear about a wide range of topics within applied mathematics, and to gain insight into the impact that mathematical research can have. The winner will be decided by a judging panel comprising Professors Helen Byrne, Jon Chapman, Patrick Farrell, and Christina Goldschmidt.
Total positivity: a concept at the interface between algebra, analysis and combinatorics
Abstract
A matrix M of real numbers is called totally positive if every minor of M is nonnegative. This somewhat bizarre concept from linear algebra has surprising connections with analysis - notably polynomials and entire functions with real zeros, and the classical moment problem and continued fractions - as well as combinatorics. I will explain briefly some of these connections, and then introduce a generalization: a matrix M of polynomials (in some set of indeterminates) will be called coefficientwise totally positive if every minor of M is a polynomial with nonnegative coefficients. Also, a sequence (an)n≥0 of real numbers (or polynomials) will be called (coefficientwise) Hankel-totally positive if the Hankel matrix H = (ai+j)i,j ≥= 0 associated to (an) is (coefficientwise) totally positive. It turns out that many sequences of polynomials arising in enumerative combinatorics are (empirically) coefficientwise Hankel-totally positive; in some cases this can be proven using continued fractions, while in other cases it remains a conjecture.
Confined Rayleigh Taylor instabilities and other mushy magma problems
Abstract
The magma chamber - an underground vat of fluid magma that is tapped during volcanic eruptions - has been the foundation of models of volcanic eruptions for many decades and successfully explains many geological observations. However, geophysics has failed to image the postulated large magma chambers, and the chemistry and ages of crystals in erupted magmas indicate a more complicated history. New conceptual models depict subsurface magmatic systems as dominantly uneruptible crystalline networks with interstitial melt (mushes) extending deep into the Earth's crust to the mantle, containing lenses of potentially eruptible (low-crystallinity) magma. These lenses would commonly be less dense than the overlying mush and so Rayleigh Taylor instabilities should develop leading to ascent of blobs of magma unless the growth rate is sufficiently slow that other processes (e.g. solidification) dominate. The viscosity contrast between a buoyant layer and mush is typically extremely large; a consequence is that the horizontal dimension of a magma reservoir is commonly much less than the theoretical fastest growing wavelength assuming an infinite horizontal layer.
I will present laboratory experiments and linear stability analysis for low Reynolds number, laterally confined Rayleigh Taylor instabilities involving one layer that is much thinner and much less viscous than the other. I will then apply the results to magmatic systems, comparing timescales for development of the instability and the volumes of packets of rising melt generated, with the frequencies and sizes of volcanic eruptions. I will then discuss limitations of this work and outstanding fluid dynamical problems in this new paradigm of trans-crustal magma mush systems.
Mathematics: the past, present and future - "The Goldbach Conjecture"
Abstract
The Goldbach conjecture is a famous unsolved problem in mathematics. It asks whether every even number greater than or equal to 4 is the sum of two primes. I will discuss some of the history of the problem, explaining among other things why the answer is surely yes, and also why this appears to be very hard to prove.
In-silico modelling of the tumour microenvironment
Abstract
Despite progress in understanding many aspects of malignancy, resistance to therapy is still a frequent occurrence. Recognised causes of this resistance include 1) intra-tumour heterogeneity resulting in selection of resistant clones, 2) redundancy and adaptability of gene signalling networks, and 3) a dynamic and protective microenvironment. I will discuss how these aspects influence each other, and then focus on the tumour microenvironment.
The tumour microenvironment comprises a heterogeneous, dynamic and highly interactive system of cancer and stromal cells. One of the key physiological and micro-environmental differences between tumour and normal tissues is the presence of hypoxia, which not only alters cell metabolism but also affects DNA damage repair and induces genomic instability. Moreover, emerging evidence is uncovering the potential role of multiple stroma cell types in protecting the tumour primary niche.
I will discuss our work on in silico cancer models, which is using genomic data from large clinical cohorts of individuals to provide new insights into the role of the tumour microenvironment in cancer progression and response to treatment. I will then discuss how this information can help to improve patient stratification and develop novel therapeutic strategies.