Fri, 19 Jan 2018

16:00 - 17:00
L1

Owning a successful DPhil

Dan Ciubotaru, Philip Maini, Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes, Carolina Matte Gregory
Abstract

Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

  • In the first half of the session Dan Ciubotaru and Philip Maini will give short talks on their experiences as PhD students and supervisors.
  • The second part of the session will be a panel discussion with final-year Dphil students and early postdocs.

The panel will consist of Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes and Carolina Matte Gregory. Senior faculty members will be kindly asked to leave the lecture theatre to ensure that students feel comfortable discussing their experiences with other students and postdocs without any senior faculty present.

Thu, 18 Jan 2018
16:00
L6

Mazur's Eisenstein ideal

Carl Wang-Erickson
(Imperial College, London)
Abstract

In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. He proved a great deal about these congruences, and also posed some questions: how many cusp forms of a given level are congruent to the Eisenstein series? How big is the extension generated by their coefficients? In joint work with Preston Wake, we give an answer to these questions in terms of cup products (and Massey products) in Galois cohomology. Time permitting, we may be able to indicate some partial generalisations of Mazur's results to square-free level.

Thu, 18 Jan 2018

16:00 - 17:30
L4

Information and Derivatives

Jerome Detemple
(Boston University)
Abstract

We study a dynamic multi-asset economy with private information, a stock and a derivative. There are informed and uninformed investors as well as bounded rational investors trading on noise. The noisy rational expectations equilibrium is obtained in closed form. The equilibrium stock price follows a non-Markovian process, is positive and has stochastic volatility. The derivative cannot be replicated, except at rare endogenous times. At any point in time, the derivative price adds information relative to the stock price, but the pair of prices is less informative than volatility, the residual demand or the history of prices. The rank of the asset span drops at endogenous times causing turbulent trading activity. The effects of financial innovation are discussed. The equilibrium is fully revealing if the derivative is not traded: financial innovation destroys information.

Thu, 18 Jan 2018

16:00 - 17:30
L3

Cascade dynamics on networks

James Gleeson
(University of Limerick)
Abstract

Network models may be applied to describe many complex systems, and in the era of online social networks the study of dynamics on networks is an important branch of computational social science.  Cascade dynamics can occur when the state of a node is affected by the states of its neighbours in the network, for example when a Twitter user is inspired to retweet a message that she received from a user she follows, with one event (the retweet) potentially causing further events (retweets by followers of followers) in a chain reaction. In this talk I will review some simple models that can help us understand how social contagion (the spread of cultural fads and the viral diffusion of information) depends upon the structure of the social network and on the dynamics of human behaviour. Although the models are simple enough to allow for mathematical analysis, I will show examples where they can also provide good matches to empirical observations of cascades on social networks.

Thu, 18 Jan 2018

14:00 - 15:00
L4

Hybrid discontinuous Galerkin discretisation and domain decomposition preconditioners for the Stokes problem

Victorita Dolean
(University of Strathclyde)
Abstract

Solving the Stokes equation by an optimal domain decomposition method derived algebraically involves the use of non standard interface conditions whose discretisation is not trivial. For this reason the use of approximation methods such as hybrid discontinuous Galerkin appears as an appropriate strategy: on the one hand they provide the best compromise in terms of the number of degrees of freedom in between standard continuous and discontinuous Galerkin methods, and on the other hand the degrees of freedom used in the non standard interface conditions are naturally defined at the boundary between elements. In this work we introduce the coupling between a well chosen discretisation method (hybrid discontinuous Galerkin) and a novel and efficient domain decomposition method to solve the Stokes system. We present the detailed analysis of the hybrid discontinuous Galerkin method for the Stokes problem with non standard boundary conditions. This analysis is supported by numerical evidence. In addition, the advantage of the new preconditioners over more classical choices is also supported by numerical experiments.

This work was done in collaboration with G. Barrenechea, M. Bosy (Univ. Strathclyde) and F. Nataf, P-H Tournier (Univ of Paris VI)

Thu, 18 Jan 2018
12:00
L5

Nonlinear cross-diffusion systems and gradient flows

Maria Bruna
(Oxford University)
Abstract

We will discuss nonlinear cross-diffusion models describing cell motility of two distinct populations. The continuum PDE model is derived systematically from a stochastic discrete model consisting of impenetrable diffusing spheres. In this talk, I will outline the derivation of the cross-diffusion model, discuss some of its features such as the gradient-flow structure, and show numerical results comparing the discrete stochastic system to the derived model.

Wed, 17 Jan 2018

16:00 - 17:00
C4

RAAGs and Stable Commutator Length

Nicolaus Heuer
(University of Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of group elements g  (write scl(g)) and  has both geometric and algebraic meaning.

It is a phenomenon that many classes of non-positively curved groups have a gap in stable commutator length: For every non-trivial element g, scl(g) > C for some C>0. Such gaps may be found in hyperbolic groups, Baumslag-solitair groups, free products, Mapping class groups, etc. 
However, the exact size of this gap usually unknown, which is due to a lack of a good source of “quasimorphisms”.

In this talk I will construct a new source of quasimorphisms which yield optimal gaps and show that for Right-Angled Artin Groups and their subgroups the gap of stable commutator length is exactly 1/2. I will also show this gap for certain amalgamated free products.

Wed, 17 Jan 2018
15:00
L4

Past and Future of Embedded Security: From Self-driving Cars to Transistor Trojans

Christof Paar
(Ruhr-Uni­ver­si­tät Bo­chum)
Abstract

With the evolution towards the IoT and cyber-physical systems, the role that the underlying hardware plays in securing an application is becoming more prominent. Hardware can be used constructively, e.g. for accelerating computationally- intensive cryptographic algorithms. Hardware can also be used destructively, e.g., for physical attacks or transistor-level Trojans which are virtually impossible to detect. In this talk, we will present case studies for high-speed cryptography used in car2x communication and recent research on low-level hardware Trojans. 

Tue, 16 Jan 2018
14:30
L6

The exact minimum number of triangles in a graph of given order and size

Katherine Staden
(Oxford)
Abstract

A famous theorem of Mantel from 1907 states that every n-vertex graph with more than n^2/4 edges contains at least one triangle. In the 50s, Erdős asked for a quantitative version of this statement: for every n and e, how many triangles must an n-vertex e-edge graph contain?

This question has received a great deal of attention, and a long series of partial results culminated in an asymptotic solution by Razborov, extended to larger cliques by Nikiforov and Reiher. Currently, an exact solution is only known for a small range of edge densities, due to Lovász and Simonovits. In this talk, I will discuss the history of the problem and recent work which gives an exact solution for almost the entire range of edge densities. This is joint work with Hong Liu and Oleg Pikhurko.

Tue, 16 Jan 2018

14:30 - 15:00
L5

Parameter estimation with forward operators

Ozzy Nilsen
(InFoMM)
Abstract

We propose a new parameter estimation technique for SDEs, based on the inverse problem of finding a forward operator describing the evolution of temporal data. Nonlinear dynamical systems on a state-space can be lifted to linear dynamical systems on spaces of higher, often infinite, dimension. Recently, much work has gone into approximating these higher-dimensional systems with linear operators calculated from data, using what is called Dynamic Mode Decomposition (DMD). For SDEs, this linear system is given by a second-order differential operator, which we can quickly calculate and compare to the DMD operator.

Tue, 16 Jan 2018

14:00 - 14:30
L5

Numerically Constructing Measure-Valued Solutions

Miles Caddick
(OxPDE)
Abstract

In 2016-17, Fjordholm, Kappeli, Mishra and Tadmor developed a numerical method by which one could compute measure-valued solutions to systems of hyperbolic conservation laws with either measure-valued or deterministic initial data. In this talk I will discuss the ideas behind this method, and discuss how it can be adapted to systems of quasi-linear parabolic PDEs whose nonlinearity fails to satisfy a monotonicity condition.

Tue, 16 Jan 2018

12:00 - 13:00
C3

Classifying Conversation in Digital Communication

Andrew Mellor
(University of Oxford)
Abstract

Many studies of digital communication, in particular of Twitter, use natural language processing (NLP) to find topics, assess sentiment, and describe user behaviour.
In finding topics often the relationships between users who participate in the topic are neglected.
We propose a novel method of describing and classifying online conversations using only the structure of the underlying temporal network and not the content of individual messages.
This method utilises all available information in the temporal network (no aggregation), combining both topological and temporal structure using temporal motifs and inter-event times.
This allows us to describe the behaviour of individuals and collectives over time and examine the structure of conversation over multiple timescales.
 

Mon, 15 Jan 2018

15:45 - 16:45
L3

SDEs, BSDEs and PDEs with distributional coefficients

ELENA ISSOGLIO
(Leeds University)
Abstract

In this talk I will present three families of differential equations (SDEs, BSDEs and PDEs) and their links to each other. The novel fact is that some of the coefficients are generalised functions living in a fractional Sobolev space of negative order. I will discuss the appropriate notion of solution for each type of equation and show existence and uniqueness results. To do so, I will use tools from analysis like semigroup theory, pointwise products, theory of function spaces, as well as classical tools from probability and stochastic analysis. The link between these equations will play a fundamental role, in particular the results on the PDE are used to give a meaning and solve both the forward and the backward stochastic differential equations.  

Mon, 15 Jan 2018

14:15 - 15:15
L3

Iterated Integrals of stochastic processes

HORATIO BOEDIHARDJO
(University of Reading)
Abstract

Stochastic differential equations have Taylor expansions in terms of iterated Wiener integrals. The convergence of such expansion depends on the limiting behavior of the order-N iterated integrals as N tends to infinity. Recently, there has been increased interests in processes stopped at a random time. A breakthrough in the study of the iterated integrals of Brownian motion up to the exit time of a domain was included in the work of Lyons-Ni (2012). The paper leaves open an interesting question: what is the sharp rate of decay for the expected iterated integrals up to the exit time. We will review the state of the art in this problem and report some recent progress. Joint work with Ni Hao (UCL).

 

Mon, 15 Jan 2018

13:00 - 17:00
L1

Abel in Oxford - Lectures by Abel Prize winners and members of the Abel Prize Committee

Andrew Wiles, Irene Fonseca, John Rognes
(University of Oxford)
Abstract

Timetable:

1.00pm: Introductory Remarks by Camilla Serck-Hanssen, the Vice President of the Norwegian Academy of Science and Letters

1.10pm - 2.10pm: Andrew Wiles

2.10pm - 2.30pm: Break

2.30pm - 3.30pm: Irene Fonseca

3.30pm - 4.00pm: Tea and Coffee

4.00pm - 5.00pm: John Rognes

Abstracts:

Andrew Wiles: Points on elliptic curves, problems and progress

This will be a survey of the problems concerned with counting points on elliptic curves.

-------

Irene Fonseca: Mathematical Analysis of Novel Advanced Materials

Quantum dots are man-made nanocrystals of semiconducting materials. Their formation and assembly patterns play a central role in nanotechnology, and in particular in the optoelectronic properties of semiconductors. Changing the dots' size and shape gives rise to many applications that permeate our daily lives, such as the new Samsung QLED TV monitor that uses quantum dots to turn "light into perfect color"! 

Quantum dots are obtained via the deposition of a crystalline overlayer (epitaxial film) on a crystalline substrate. When the thickness of the film reaches a critical value, the profile of the film becomes corrugated and islands (quantum dots) form. As the creation of quantum dots evolves with time, materials defects appear. Their modeling is of great interest in materials science since material properties, including rigidity and conductivity, can be strongly influenced by the presence of defects such as dislocations. 

In this talk we will use methods from the calculus of variations and partial differential equations to model and mathematically analyze the onset of quantum dots, the regularity and evolution of their shapes, and the nucleation and motion of dislocations.

-------

John Rognes: Symmetries of Manifolds

To describe the possible rotations of a ball of ice, three real numbers suffice.  If the ice melts, infinitely many numbers are needed to describe the possible motions of the resulting ball of water.  We discuss the shape of the resulting spaces of continuous, piecewise-linear or differentiable symmetries of spheres, balls and higher-dimensional manifolds.  In the high-dimensional cases the answer turns out to involve surgery theory and algebraic K-theory.

Fri, 15 Dec 2017

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Ferran Brosa Planella, Rachel Philip, Ian Roper, Valentin Sulzer
(Mathematical Institute)
Fri, 15 Dec 2017

10:00 - 11:00
L3

Interpreting non-invasive measurement of markers of diseases including diabetes and Alzheimer’s

Dan Daly
(Lein Applied Diagnostics)
Abstract

Lein Applied Diagnostics has a novel optical measurement technique that is used to measure various parameters in the body for medical applications.

Two particular areas of interest are non-invasive glucose measurement for diabetes care and the diagnosis of diabetes. Both measurements are based on the eye and involve collecting complex data sets and modelling their links to the desired parameter.

If we take non-invasive glucose measurement as an example, we have two data sets – that from the eye and the gold standard blood glucose reading. The goal is to take the eye data and create a model that enables the calculation of the glucose level from just that eye data (and a calibration parameter for the individual). The eye data consists of measurements of apparent corneal thickness, anterior chamber depth, optical axis orientation; all things that are altered by the change in refractive index caused by a change in glucose level. So, they all correlate with changes in glucose as required but there are also noise factors as these parameters also change with alignment to the meter etc. The goal is to get to a model that gives us the information we need but also uses the additional parameter data to discount the noise features and thereby improve the accuracy.

Thu, 07 Dec 2017
14:00
Rutherford Appleton Laboratory, nr Didcot

Truncated SVD Approximation via Kronecker Summations

Professor James Nagy
(Emory University)
Abstract


In this talk we describe an approach to approximate the truncated singular value decomposition of a large matrix by first decomposing the matrix into a sum of Kronecker products. Our approach can be used to more efficiently approximate a large number of singular values and vectors than other well known schemes, such as iterative algorithms based on the Golub-Kahan bidiagonalization or randomized matrix algorithms. We provide theoretical results and numerical experiments to demonstrate accuracy of our approximation, and show how the approximation can be used to solve large scale ill-posed inverse problems, either as an approximate filtering method, or as a preconditioner to accelerate iterative algorithms.
 

Wed, 06 Dec 2017

17:00 - 18:00
L1

Alex Bellos - Can Yule solve my problems?

Alex Bellos
Abstract

In our Oxford Mathematics Christmas Lecture Alex Bellos challenges you with some festive brainteasers as he tells the story of mathematical puzzles from the middle ages to modern day. Alex is the Guardian’s puzzle blogger as well as the author of several works of popular maths, including Puzzle Ninja, Can You Solve My Problems? and Alex’s Adventures in Numberland.

Please email @email to register.

 

Wed, 06 Dec 2017

11:30 - 13:00
L5

Hydrodynamics and acoustics of a free falling drop impact on a quiescent water layer

Yuli Chashechkin
(Russian Academy of Sciences)
Abstract

Using synchronized high-speed video camera, hydrophone and microphone we investigated flow patterns, the impact and secondary sound pulses emitted by oscillating bubbles. On the submerging  drop found short capillary waves produced by small secondary impact droplets. Picturesque filament and grid structures produced by colour drop of mixing fluid registered on the surface of the cavity and crown. Physical model includes discussion of the potential surface energy effects.