17:00
Elastic models for growing tissues: scaling laws and derivation by Gamma convergence
Abstract
Certain elastic structures and growing tissues (leaves, flowers or marine invertebrates) exhibit residual strain at free equilibria. We intend to study this phenomena through an elastic growth variational model. We will first discuss this model from a differential geometric point of view: the growth seems to change the intrinsic metric of the tissue to a new target non-flat metric. The non-vanishing curvature is the cause of the non-zero stress at equilibria.
We further discuss the scaling laws and $\Gamma$-limits of the introduced 3d functional on thin plates in the limit of vanishing thickness. Among others, given special forms of growth tensors, we rigorously derive the non-Euclidean versions of Kirchhoff and von Karman models for elastic non-Euclidean plates. Sobolev spaces of isometries and infinitesimal isometries of 2d Riemannian manifolds appear as the natural space of admissible mappings in this context. In particular, as a side result, we obtain an equivalent condition for existence of a $W^{2,2}$ isometric immersion of a given $2$d metric on a bounded domain into $\mathbb R3$.
15:45
14:15
Lattices in Simple Lie Groups: A Survey
Abstract
Lattices in semisimple Lie groups have been studied from the point of view of number theory, algebraic groups, topology and geometry, and geometric group theory. The Fragestellung of one line of investigation is to what extent the properties of the lattice determine, and are determined by, the properties of the group. This talk reviews a number of results about lattices, and in particular looks at Mostow--Margulis rigidity.
On the classification of Brane Tilings
Abstract
Geometrically constrained walls in two dimension.
Abstract
We address the effect of extreme geometry on a non-convex variational problem motivated by recent investigations of magnetic domain walls trapped by sharp thin necks. We prove the existence of local minimizers representing geometrically constrained walls under suitable symmetry assumptions on the domains and provide an asymptotic characterization of the wall profile. The asymptotic behavior, which depends critically on the scaling of length and width of the neck, turns out to be qualitatively different from the higher-dimensional case and a richer variety of regimes is shown to exist.
A comparison of stochastic and analytical models for cell migration
Abstract
Abstract: Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs.
14:30
The freezing of colloids: implications and applications in materials science and geophysics Dr Sylvain Deville, CNRS/Saint-Gobain
Investigating the freezing of colloids by X-rays radiography and tomography: recent results, limitations and potential for further progress
Abstract
Understanding the critical parameters controlling the stability of solidification interfaces in colloidal systems is a necessary step in many domains were the freezing of colloids is present, such as materials science or geophysics. What we understand so far of the solidification of colloidal suspensions is derived primarily from the analogies with dilute alloys systems, or the investigated behaviour of single particles in front of a moving interface and is still a subject of intense work. A more realistic, multi-particles model should account for the particles movement, the various possible interactions between the particles and the multiple interactions between the particles and the solid/liquid cellular interface. In order to bring new experimental observations, we choose to investigate the stability of a cellular interface during directional solidification of colloidal suspensions by using X-ray radiography and tomography. I will present recent experimental results of ice growth (ice lenses) and particle redistribution observations, their implications, and open the discussion regarding the limitations of the technique and the potential for further progress in the field using this approach.
Erosion and dune formation on particle beds submitted to shearing flow
Compactifying Spec $\mathbb{Z}$
Abstract
The spectrum of the integers is an affine scheme which number theorists would like to complete to a projective scheme, adding a point at infinity. We will list some reasons for wanting to do this, then gather some hints about what properties the completed object might have. In particular it seems that the desired object can only exist in some setting extending traditional algebraic geometry. We will then present the proposals of Durov and Shai Haran for such extended settings and the compactifications they construct. We will explain the close relationship between both and, if time remains, relate them to a third compactification in a third setting, proposed by Toen and Vaquie.
11:00
Synchronization in the rotating baroclinic annulus experiment
16:00
Locally Boolean, globally intuitionistic - a new kind of quantum space and its topology
The Quest for $\mathbb{F}_\mathrm{un}$
Abstract
We will present different ideas leading to and evolving around geometry over the field with one element. After a brief summary of the so-called numbers-functions correspondence we will discuss some aspects of Weil's proof of the Riemann hypothesis for function fields. We will see then how lambda geometry can be thought of as a model for geometry over $\mathbb{F}_\mathrm{un}$ and what some familiar objects should look like there. If time permits, we will
explain a link with stable homotopy theory.
10:10
"Against the grain: Continuum modelling of dense granular flows" Paper: Flows of dense granular media
A general class of self-dual percolation models
Abstract
Since Kesten's result, more complicated duality properties have been used to determine a variety of other critical probabilities. Recently, Scullard and Ziff have described a very general class of self-dual percolation models; we show that for the entire class (in fact, a larger class), self-duality does imply criticality.
An alternative approach to regularity for the Navier-Stokes equations in critical spaces
Abstract
We present an alternative viewpoint on recent studies of regularity of solutions to the Navier-Stokes equations in critical spaces. In particular, we prove that mild solutions which remain bounded in the
space $\dot H^{1/2}$ do not become singular in finite time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Sverak using a different approach. We use the method of "concentration-compactness" + "rigidity theorem" which was recently developed by C. Kenig and F. Merle to treat critical dispersive equations. To the authors' knowledge, this is the first instance in which this method has been applied to a parabolic equation. This is joint work with Carlos Kenig.
12:00
Late-time tails of self-gravitating waves
Abstract
linear and nonlinear tails in four dimensions.
A uniqueness result for graphs of least gradient
Abstract
We investigate the minimization problem for the variational integral
$$\int_\Omega\sqrt{1+|Dw|^2}\,dx$$
in Dirichlet classes of vector-valued functions $w$. It is well known that
the existence of minimizers can be established if the problem is formulated
in a generalized way in the space of functions of bounded variation. In
this talk we will discuss a uniqueness theorem for these generalized
minimizers. Actually, the theorem holds for a larger class of variational
integrals with linear growth and was obtained in collaboration with Lisa
Beck (SNS Pisa).
15:45
Probabilistic Representation of a Partial Differential Equation with Monotone Discontinuous Coefficients and Related Fields
14:15
The Largest Eigenvalues of Finite Rank Deformation of Large Wigner Matrices: Convergence and Fluctuations
Abstract
Joint work with C. Donati-Martin and D. Feral
Dynamical Vacuum Selection and Supersymmetry Breaking in String Theory
Abstract
14:15
Jump-Diffusion Risk-Sensitive Asset Management Mark H.A. Davis, Sebastien Lleo
Abstract
This paper considers a portfolio optimization problem in which asset prices are represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions of an auxiliary diffusion 'factor' process. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) By using a change of measure technique introduced by Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem in the factor process, which has no jumps. The main result of the paper is that the Hamilton-Jacobi-Bellman equation for this problem has a classical solution. The proof uses Bellman's "policy improvement"
method together with results on linear parabolic PDEs due to Ladyzhenskaya et al. This is joint work with Sebastien Lleo.
14:00
Optimising noisy concentration gradients in developmental biology
17:00
VC density for formulas in some NIP theories
Abstract
VC dimension and density are properties of a collection of sets which come from probability theory. It was observed by Laskowski that there is a close tie between these notions and the model-theoretic property called NIP. This tie results in many examples of collections of sets that have finite VC dimension. In general, it is difficult to find upper bounds for the VC dimension, and known bounds are mostly very large. However, the VC density seems to be more accessible. In this talk, I will explain all of the above acronyms, and present a theorem which gives an upper bound (in some cases optimal) on the VC density of formulae in some examples of NIP theories. This represents joint work of myself with M. Aschenbrenner, A. Dolich, D. Macpherson and S.
Starchenko.
Frank-Read sources and the yield of anisotropic cubic crystals
Abstract
Frank-Read sources are among the most important mechanisms of dislocation multiplication,
and their operation signals the onset of yield in crystals. We show that the critical
stress required to initiate dislocation production falls dramatically at high elastic
anisotropy, irrespective of the mean shear modulus. We hence predict the yield stress of
crystals to fall dramatically as their anisotropy increases. This behaviour is consistent
with the severe plastic softening observed in alpha-iron and ferritic steels as the
alpha − gamma martensitic phase transition is approached, a temperature regime of crucial
importance for structural steels designed for future nuclear applications.
Is the Outer Solar System Chaotic?
Abstract
The stability of our Solar System has been debated since Newton devised
the laws of gravitation to explain planetary motion. Newton himself
doubted the long-term stability of the Solar System, and the question
has remained unanswered despite centuries of intense study by
generations of illustrious names such as Laplace, Langrange, Gauss, and
Poincare. Finally, in the 1990s, with the advent of computers fast
enough to accurately integrate the equations of motion of the planets
for billions of years, the question has finally been settled: for the
next 5 billion years, and barring interlopers, the shapes of the
planetary orbits will remain roughly as they are now. This is called
"practical stability": none of the known planets will collide with each
other, fall into the Sun, or be ejected from the Solar System, for the
next 5 billion years.
Although the Solar System is now known to be practically stable, it may
still be "chaotic". This means that we may---or may not---be able
precisely to predict the positions of the planets within their orbits,
for the next 5 billion years. The precise positions of the planets
effects the tilt of each planet's axis, and so can have a measurable
effect on the Earth's climate. Although the inner Solar System is
almost certainly chaotic, for the past 15 years, there has been
some debate about whether the outer Solar System exhibits chaos or not.
In particular, when performing numerical integrations of the orbits of
the outer planets, some astronomers observe chaos, and some do not. This
is particularly disturbing since it is known that inaccurate integration
can inject chaos into a numerical solution whose exact solution is known
to be stable.
In this talk I will demonstrate how I closed that 15-year debate on
chaos in the outer solar system by performing the most carefully justified
high precision integrations of the orbits of the outer planets that has
yet been done. The answer surprised even the astronomical community,
and was published in _Nature Physics_.
I will also show lots of pretty pictures demonstrating the fractal nature
of the boundary between chaos and regularity in the outer Solar System.
The problem of the homotopy invariance of configuration spaces
Abstract
The talk is about the homotopy type of configuration spaces. Once upon a time there was a conjecture that it is a homotopy invariant of closed manifolds. I will discuss the strong evidence supporting this claim, together with its recent disproof by a counterexample. Then I will talk about the corrected version of the original conjecture.