Fri, 21 Nov 2014
16:30
L2

The Mathematics of Non-Locality and Contextuality

Samson Abramsky
(Dept of Computer Science - University of Oxford)
Abstract

Quantum Mechanics presents a radically different perspective on physical reality compared with the world of classical physics. In particular, results such as the Bell and Kochen-Specker theorems highlight the essentially non-local and contextual nature of quantum mechanics. The rapidly developing field of quantum information seeks to exploit these non-classical features of quantum physics to transcend classical bounds on information processing tasks.

In this talk, we shall explore the rich mathematical structures underlying these results. The study of non-locality and contextuality can be expressed in a unified and generalised form in the language of sheaves or bundles, in terms of obstructions to global sections. These obstructions can, in many cases, be witnessed by cohomology invariants. There are also strong connections with logic. For example, Bell inequalities, one of the major tools of quantum information and foundations, arise systematically from logical consistency conditions.

These general mathematical characterisations of non-locality and contextuality also allow precise connections to be made with a number of seemingly unrelated topics, in classical computation, logic, and natural language semantics. By varying the semiring in which distributions are valued, the same structures and results can be recognised in databases and constraint satisfaction as in probability models arising from quantum mechanics. A rich field of contextual semantics, applicable to many of the situations where the pervasive phenomenon of contextuality arises, promises to emerge.

Fri, 21 Nov 2014

14:30 - 15:45
L2

The History of Mathematics in 300 Stamps

Robin Wilson
(Open University)
Abstract

The entire history of mathematics in one hour, as illustrated by around 300 postage stamps featuring mathematics and mathematicians from across the world.

From Euclid to Euler, from Pythagoras to Poincaré, and from Fibonacci to the Fields Medals, all are featured in attractive, charming and sometimes bizarre stamps. No knowledge of mathematics or philately required.

Fri, 21 Nov 2014

14:15 - 15:15
C1

Modelling Volcanic Plumes

Mark Woodhouse
(University of Bristol)
Abstract

Explosive volcanic eruptions often produce large amounts of ash that is transported high into the atmosphere in a turbulent buoyant plume.  The ash can be spread widely and is hazardous to aircraft causing major disruption to air traffic.  Recent events, such as the eruption of Eyjafjallajokull, Iceland, in 2010 have demonstrated the need for forecasts of ash transport to manage airspace.  However, the ash dispersion forecasts require boundary conditions to specify the rate at which ash is delivered into the atmosphere.

 

Models of volcanic plumes can be used to describe the transport of ash from the vent into the atmosphere.  I will show how models of volcanic plumes can be developed, building on classical fluid mechanical descriptions of turbulent plumes developed by Morton, Taylor and Turner (1956), and how these are used to determine the volcanic source conditions.  I will demonstrate the strong atmospheric controls on the buoyant plume rise.  Typically steady models are used as solutions can be obtained rapidly, but unsteadiness in the volcanic source can be important.  I'll discuss very recent work that has developed unsteady models of volcanic plumes, highlighting the mathematical analysis required to produce a well-posed mathematical description.

Fri, 21 Nov 2014

13:00 - 14:00
L6

tba

There will be no seminar in Week 6.
Fri, 21 Nov 2014

10:00 - 11:00
L5

Workshop with Sharp - Two Modelling Problems: (i) Freezing Particle-Containing Liquids and (ii)Llithium/Sodium Batteries

Abstract

Abstract:

(i) We consider the modelling of freezing of fluids which contain particulates and fibres (imagine orange juice “with bits”) flowing in channels. The objective is to design optimum geometry/temperatures to accelerate freezing.

(ii) We present the challenge of setting-up a model for lithium or sodium ion stationary energy storage cells and battery packs to calculate the gravimetric and volumetric energy density of the cells and cost. Depending upon the materials, electrode content, porosity, packing electrolyte and current collectors. There is a model existing for automotive called Batpac.

Thu, 20 Nov 2014

16:00 - 17:00
C2

Cancelled

Felix Tennie
(Oxford University)
Thu, 20 Nov 2014

16:00 - 17:00
L5

On Roth's theorem on arithmetic progression

Thomas Bloom
(Bristol)
Abstract

In 1953 Roth proved that any positive density subset of the integers contains a non-trivial three term arithmetic progression. I will present a recent quantitative improvement for this theorem, give an overview of the main ideas of the proof, and discuss its relation to other recent work in the area. I will also discuss some closely related problems. 

Thu, 20 Nov 2014

16:00 - 17:00
L3

Group Meeting

Tania Khaleque, Jonny Black, Marya Bazzi
Thu, 20 Nov 2014

14:00 - 15:00
L5

The Dynamic Dictionary of Mathematical Functions

Dr Marc Mezzarobba
(CNRS and Ecole Normale Superieure)
Abstract

The Dynamic Dictionary of Mathematical Functions (or DDMF, http://ddmf.msr-inria.inria.fr/) is an interactive website on special functions inspired by reference books such as the NIST Handbook of Special Functions. The originality of the DDMF is that each of its “chapters” is automatically generated from a short mathematical description of the corresponding function.

To make this possible, the DDMF focuses on so-called D-finite (or holonomic) functions, i.e., complex analytic solutions of linear ODEs with polynomial coefficients. D-finite functions include in particular most standard elementary functions (exp, log, sin, sinh, arctan...) as well as many of the classical special functions of mathematical physics (Airy functions, Bessel functions, hypergeometric functions...). A function of this class can be represented by a finite amount of data (a differential equation along with sufficiently many initial values), 
and this representation makes it possible to develop a computer algebra framework that deals with the whole class in a unified way, instead of ad hoc algorithms and code for each particular function. The DDMF attempts to put this idea into practice.

In this talk, I will present the DDMF, some of the algorithms and software libraries behind it, and ongoing projects based on similar ideas, with an emphasis on symbolic-numeric algorithms.

Wed, 19 Nov 2014

16:00 - 17:00
C1

Orbifolds and the 84(g-1) Theorem

Federico Vigolo
(Oxford)
Abstract

In 1983 Kerckhoff settled a long standing conjecture by Nielsen proving that every finite subgroup of the mapping class group of a compact surface can be realized as a group of diffeomorphisms. An important consequence of this theorem is that one can now try to study subgroups of the mapping class group taking the quotient of the surface by these groups of diffeomorphisms. In this talk we will study quotients of surfaces under the action of a finite group to find bounds on the cardinality of such a group.

Wed, 19 Nov 2014
12:30
N3.12

Modularity of networks

Fiona Skerman
(Oxford University)
Abstract

Modularity is a quality function on partitions of a network which aims to identify highly clustered components. Given a graph G, the modularity of a partition of the vertex set measures the extent to which edge density is higher within parts than between parts; and the modularity q(G) of G is the maximum modularity of a partition of V(G). Knowledge of the maximum modularity of the corresponding random graph is important to determine the statistical significance of a partition in a real network. We provide bounds for the modularity of random regular graphs. Modularity is related to the Hamiltonian of the Potts model from statistical physics. This leads to interest in the modularity of lattices, which we will discuss. This is joint work with Colin McDiarmid.

Tue, 18 Nov 2014

17:00 - 18:00
C2

Commuting probabilities of finite groups

Sean Eberhard
(Oxford)
Abstract

The commuting probability of a finite group is defined to be the probability that two randomly chosen group elements commute. Not all rationals between 0 and 1 occur as commuting probabilities. In fact Keith Joseph conjectured in 1977 that all limit points of the set of commuting probabilities are rational, and moreover that these limit points can only be approached from above. In this talk we'll discuss a structure theorem for commuting probabilities which roughly asserts that commuting probabilities are nearly Egyptian fractions of bounded complexity. Joseph's conjectures are corollaries.

Tue, 18 Nov 2014

14:00 - 14:30
L5

On sparse representations for piecewise smooth signals

Andrew Thompson
(University of Oxford)
Abstract

It is well known that piecewise smooth signals are approximately sparse in a wavelet basis. However, other sparse representations are possible, such as the discrete gradient basis. It turns out that signals drawn from a random piecewise constant model have sparser representations in the discrete gradient basis than in Haar wavelets (with high probability). I will talk about this result and its implications, and also show some numerical experiments in which the use of the gradient basis improves compressive signal reconstruction.

Tue, 18 Nov 2014
14:00
L4

The Donaldson-Thomas theory of K3xE and the Igusa cusp form

Jim Bryan
(University of British Columbia)
Abstract

Donaldson-Thomas invariants are fundamental deformation invariants of Calabi-Yau threefolds. We describe a recent conjecture of Oberdieck and Pandharipande which predicts that the (three variable) generating function for the Donaldson-Thomas invariants of K3xE is given by the reciprocal of the Igusa cusp form of weight 10. For each fixed K3 surface of genus g, the conjecture predicts that the corresponding (two variable) generating function is given by a particular meromorphic Jacobi form. We prove the conjecture for K3 surfaces of genus 0 and genus 1. Our computation uses a new technique which mixes motivic and toric methods.

Tue, 18 Nov 2014

12:30 - 13:30
Oxford-Man Institute

tba

Dr. Joseph Engelberg
(UC San Diego)
Tue, 18 Nov 2014
12:00
L5

On the symmetries of “Yang-Mills squared”

Dr Leron Borsten
(Imperial College London)
Abstract
A recurring theme in attempts to understand the quantum theory of gravity is the idea of "Gravity as the square of Yang-Mills". In recent years this idea has been met with renewed energy, principally driven by a string of discoveries uncovering intriguing and powerful identities relating gravity and gauge scattering amplitudes. In an effort to develop this program further, we explore the relationship between both the global and local symmetries of (super)gravity and those of (super) Yang-Mills theories squared. 



In the context of global symmetries we begin by giving a unified description of D=3 super-Yang-Mills theory with N=1, 2, 4, 8 supersymmeties in terms of the four division algebras: reals, complex, quaternions and octonions. On taking the product of these multiplets we obtain a set of D=3 supergravity theories with global symmetries (U-dualities) belonging to the Freudenthal magic square: “division algebras squared” = “Yang-Mills squared”! By generalising to D=3,4,6,10 we uncover a magic pyramid of Lie algebras.



We then turn our attention to local symmetries. Regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincaré. As a concrete example we focus on the new-minimal (12+12, N=1) off-shell version four-dimensional supergravity obtained by tensoring the off-shell (super) Yang-Mills multiplets (4+4, N =1) and (3+0, N =0).