Wed, 01 Jun 2016

16:00 - 17:00
C1

Finding CAT(-1) structures on groups

Sam Brown
(UCL London)
Abstract

I will describe a method to find negatively curved structures on some groups, by manipulating metrics on piecewise hyperbolic complexes. As an example, I will prove that hyperbolic limit groups are CAT(-1).

Wed, 01 Jun 2016

15:00 - 16:00
L6

Homology torsion growth in right angled groups

Miklos Abert
(Renyi Institute Budapest)
Abstract

Torsion in homology are invariants that have received increasing attention over the last twenty years, by the work of Lück, Bergeron, Venkatesh and others. While there are various vanishing results, no one has found a finitely presented group where the torsion in the first homology is exponential over a normal chain with trivial intersection. On the other hand, conjecturally, every 3-manifold group should be an example.

A group is right angled if it can be generated by a list of infinite order elements, such that every element commutes with its neighbors. Many lattices in higher rank Lie groups (like SL(n,Z), n>2) are right angled. We prove that for a right angled group, the torsion in the first homology has subexponential growth for any Farber sequence of subgroups, in particular, any chain of normal subgroups with trivial intersection. We also exhibit right angled cocompact lattices in SL(n,R) (n>2), for which the Congruence Subgroup Property is not known. This is joint work with Nik Nikolov and Tsachik Gelander.

Wed, 01 Jun 2016
15:00
L4

Computing Factor Tables, and Tables of Class Numbers

Roger Heath-Brown
(University of Oxford)
Abstract

Efficient factorization or efficient computation of class 
numbers would both suffice to break RSA.  However the talk lies more in 
computational number theory rather than in cryptography proper. We will 
address two questions: (1) How quickly can one construct a factor table 
for the numbers up to x?, and (2) How quickly can one do the same for the 
class numbers (of imaginary quadratic fields)? Somewhat surprisingly, the 
approach we describe for the second problem is motivated by the classical 
Hardy-Littlewood method.

Tue, 31 May 2016

15:45 - 16:45
L4

Non-reductive GIT for graded groups and curve counting

Greg Berczi
(Oxford)
Abstract
I will start with a short report on recent progress in constructing quotients by actions of non-reductive algebraic groups and extending Mumford's geometric invariant theory to a wide class of non-reductive linear algebraic groups which we call graded groups. I will then explain how certain components of the Hilbert scheme of points on smooth varieties can be described as non-reductive quotients and why this description is especially efficient to study the topology of Hilbert schemes. In particular I will explain how equivariant localisation can be used to develop iterated residue formulae for tautological integrals on geometric subsets of Hilbert schemes and I present new formulae counting curves on surfaces (and more generally hypersurfaces in smooth varieties) with given singularity classes. This talk is based on joint works with Frances Kirwan, Thomas Hawes, Brent Doran and Andras Szenes. 
Fri, 27 May 2016

13:00 - 14:30
L6

Deep Learning for Modeling Financial Data

Justin Sirignano, postdoc at Imperial College.
(Imperial College London)
Abstract
Deep learning has emerged as one of the forefront areas in machine learning, achieving major success in imaging, speech recognition, and natural language processing. We apply deep learning to two areas in finance: (1) mortgage delinquency and prepayment and (2) limit order books. Using datasets unprecedented in size, we show that deep neural networks outperform several status quo approaches. Due to the heavy computational cost from both the size of the models and the data, we use GPU clusters to train the models.
Fri, 27 May 2016

11:00 - 12:00
C2

The de Rham algebra

Kevin McGerty
(Oxford)
Abstract

This talk will describe the basic properties of the de Rham algebra, which is a generalisation of the de Rham algebra over smooth schemes, which was introduced by L. Illusie in his monograph 'Complexe cotangent et déformations'.

Fri, 27 May 2016
10:00
L4

Mathematical models of genome replication

Conrad Nieduszynski
(Sir William Dunn School of Pathology)
Abstract

We aim to determine how cells faithfully complete genome replication. Accurate and complete genome replication is essential for all life. A single DNA replication error in a single cell division can give rise to a genomic disorder. However, almost all experimental data are ensemble; collected from millions of cells. We used a combination of high-resolution, genomic-wide DNA replication data, mathematical modelling and single cell experiments to demonstrate that ensemble data mask the significant heterogeneity present within a cell population; see [1-4]. Therefore, the pattern of replication origin usage and dynamics of genome replication in individual cells remains largely unknown. We are now developing cutting-edge single molecule methods and allied mathematical models to determine the dynamics of genome replication at the DNA sequence level in normal and perturbed human cells.

[1] de Moura et al., 2010, Nucleic Acids Research, 38: 5623-5633

[2] Retkute et al, 2011, PRL, 107:068103

[3] Retkute et al, 2012, PRE, 86:031916

[4] Hawkins et al., 2013, Cell Reports, 5:1132-41

Fri, 27 May 2016
10:00
N3.12

tba

Richard Mathers
Thu, 26 May 2016
17:30
L6

Topological dynamics of automorphism groups and the Hrushovski constructions

David Evans
((Imperial College, London))
Abstract

I will consider automorphism groups of countable structures acting continuously on compact spaces: the viewpoint of topological dynamics. A beautiful paper of Kechris, Pestov and Todorcevic makes a connection between this and the ‘structural Ramsey theory’ of Nesetril, Rodl and others in finite combinatorics. I will describe some results and questions in the area and say how the Hrushovski predimension constructions provide answers to some of these questions (but then raise more questions). This is joint work with Hubicka and Nesetril.

 
Thu, 26 May 2016

16:00 - 17:00
C5

Cohomogeneity one Ricci solitons

Alejandro Betancourt
(Oxford)
Abstract

Abstract: Ricci solitons are genralizations of Einstein metrics which have become subject of much interest over the last decade. In this talk I will give a basic introduction to these metrics and discuss how to reformulate the Ricci soliton equation as a Hamiltonian system assuming some symmetry conditions. Using this approach we will construct explicit solutions to the soliton equation for manifolds of dimension 5.

Thu, 26 May 2016
16:00
L6

Sub-convexity in certain Diophantine problems via the circle method

Trevor Wooley
(University of Bristol)
Abstract

The sub-convexity barrier traditionally prevents one from applying the Hardy-Littlewood (circle) method to Diophantine problems in which the number of variables is smaller than twice the inherent total degree. Thus, for a homogeneous polynomial in a number of variables bounded above by twice its degree, useful estimates for the associated exponential sum can be expected to be no better than the square-root of the associated reservoir of variables. In consequence, the error term in any application of the circle method to such a problem cannot be expected to be smaller than the anticipated main term, and one fails to deliver an asymptotic formula. There are perishingly few examples in which this sub-convexity barrier has been circumvented, and even fewer having associated degree exceeding two. In this talk we review old and more recent progress, and exhibit a new class of examples of Diophantine problems associated with, though definitely not, of translation-invariant type.

Thu, 26 May 2016

16:00 - 17:30
L4

Dividends, capital injections and discrete observation effects in risk theory

Hansjoerg Albrecher
(Universite de Lausanne)
Abstract

In the context of surplus models of insurance risk theory, 
some rather surprising and simple identities are presented. This 
includes an
identity relating level crossing probabilities of continuous-time models 
under (randomized) discrete and continuous observations, as well as
reflection identities relating dividend payments and capital injections. 
Applications as well as extensions to more general underlying processes are
discussed.

 

Thu, 26 May 2016

16:00 - 17:00
L3

IAM Group Meeting

Mason Porter, Robert Van Gorder
Abstract

A Simple Generative Model of Collective Online Behavior (Mason Porter)

Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behav- ior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity.

This demonstrates --- even when using purely observational data with- out experimental design --- that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior.

---

Bubbles, Turing machines, and possible routes to Navier-Stokes blow-up (Robert van Gorder)

Navier-Stokes existence and regularity in three spatial dimensions for an incompressible fluid... is hard. Indeed, while the original equations date back to the 1840's, existence and regularity remains an open problem and is one of the six remaining Millennium Prize Problems in mathematics that were stated by the Clay Mathematics Institute in 2000. Despite the difficulty, a resolution to this problem may say little about real-world fluids, as many real fluid problems do not seem to blow-up, anyway.
In this talk, we shall briefly outline the mathematical problem, although our focus shall be on the negative direction; in particular, we focus on the possibility of blow-up solutions. We show that many existing blow-up solutions require infinite energy initially, which is unreasonable. Therefore, obtaining a blow-up solution that starts out with nice properties such as bounded energy on three dimensional Euclidean space is rather challenging. However, if we modify the problem, there are some results. We survey recent results on averaged Navier-Stokes equations and compressible Navier-Stokes equations, and this will take us anywhere from bubbles to fluid Turing machines. We discuss how such results might give insight into the loss of regularity in the incompressible case (or, insight into how hard it might be to loose regularity of solutions when starting with finite energy in the incompressible case), before philosophizing about whether mathematical blow-up solutions could ever be physically relevant.

Thu, 26 May 2016

13:00 - 14:00
L4

Crystal, PBW, and canonical bases for quantized enveloping algebras

Gerald Cliff
(University of Alberta)
Abstract

Let U be the quantized enveloping algebra coming from a semi-simple finite dimensional complex Lie algebra. Lusztig has defined a canonical basis B for the minus part of U- of U. It has the remarkable property that one gets a basis of each highest-weight irreducible U-module V, with highest weight vector v, as the set of all bv which are not 0, as b varies in B. It is not known how to give the elements b explicitly, although there are algorithms.


For each reduced expression of the longest word in the Weyl group, Lusztig has defined a PBW basis P of U-, and for each b in B there is a unique p(b) in P such that b = p(b) + a linear combination of p' in P where the coefficients are in qZ[q]. This is much easier in the simply laced case. I show that the set of p(b)v, where b varies in B and bv is not 0, is a basis of V, and I can explicitly exhibit this basis in type A, and to some extent in types B, C, D.

It is known that B and P are crystal bases in the sense of Kashiwara. I will define Kashiwara operators, and briefly describe Kashiwara's approach to canonical bases, which he calls global bases. I show how one can calculate the Kashiwara operators acting on P, in types A, B, C, D, using tableaux of Kashiwara-Nakashima.