Thu, 10 May 2007

14:00 - 15:00
Comlab

Wave propagation in 1-d flexible multi-structures

Prof Enrique Zuazua
(Universidad Autonoma de Madrid)
Abstract

In this talk we will mainly analyze the vibrations of a simplified 1-d model for a multi-body structure consisting of a finite number of flexible strings distributed along a planar graph. In particular we shall analyze how solutions propagate along the graph as time evolves. The problem of the observation of waves is a natural framework to analyze this issue. Roughly, the question can be formulated as follows: Can we obtain complete information on the vibrations by making measurements in one single extreme of the network? This formulation is relevant both in the context of control and inverse problems.

Using the Fourier development of solutions and techniques of Nonharmonic Fourier Analysis, we give spectral conditions that guarantee the observability property to hold in any time larger than twice the total lengths of the network in a suitable Hilbert that can be characterized in terms of Fourier series by means of properly chosen weights. When the network graph is a tree these weights can be identified.

Once this is done these results can be transferred to other models as the Schroedinger, heat or beam-type equations.

This lecture is based on results obtained in collaboration with Rene Dager.

Tue, 08 May 2007
17:00
L1

Cluster algebra structures on co-ordinate ring of flag varieties

Prof. Bernard Leclerc
(Caen)
Abstract
  Let G be a complex semisimple algebraic group of type A,D,E. Fomin and Zelevinsky conjecture that the coordinate rings of many interesting varieties attached to G have a natural cluster algebra structure. In a joint work with C. Geiss and J. Schroer we realize part of this program by introducing a cluster structure on the multi-homogeneous coordinate ring of G/P for any parabolic subgroup P of G. This was previously known only for P = B a Borel (Berenstein-Fomin-Zelevinsky) and when G/P is a grassmannian Gr(k,n) (J. Scott). We give a classification of all pairs (G,P) for which this cluster algebra has finite type. Our construction relies on a finite-dimensional algebra attached to G, the preprojective algebra introduced in 1979 by Gelfand and Ponomarev. We use the fact that the coordinate ring of the unipotent radical of P is "categorified" in a natural way by a certain subcategory of the module category of the preprojective algebra.  
Mon, 07 May 2007
17:00
L1

Energy scaling and domain branching in type-I superconductors

Sergio Conti
(Duisburg)
Abstract
  The intermediate state of a type-I superconductor is a classical example of energy-driven pattern-formation, first studied by Landau in 1937. Mathematically this can be modeled by a nonconvex functional with a singular perturbation, which physically represents the surface energy. In this talk I shall discuss how a combination of interpolation inequalities and explicit constructions permits to determine the scaling of the minimal energy with respect to the relevant material parameters, and therefore to predict a phase diagram for the observed microstructure. This talk is mainly based on joint work with Rustum Choksi, Robert V. Kohn, and Felix Otto.    
Mon, 07 May 2007
15:45
L3

Local-to-global principles for classifying spaces

Jesper Grodal
(Copenhagen)
Abstract
  In this talk I will show how one can sometimes "uncomplete" the p-completed classifying space of a finite group, to obtain the original (non-completed) classifying space, and hence the original finite group. This "uncompletion" process is closely related to well-known local-to-global questions in group theory, such as the classification of finite simple groups. The approach goes via the theory of p-local finite groups. This talk is a report on joint work with Bob Oliver.  
Mon, 07 May 2007
14:15
L3

Stabilizing mapping class groups of 3-manifolds

Nathalie Wahl
(Copenhagen)
Abstract

 

Abstract:

(joint work with Allen Hatcher) Let M be a compact, connected 3-manifold with a

fixed boundary component d_0M. For each prime manifold P, we consider the

mapping class group of the manifold M_n^P obtained from M by taking a connected

sum with n copies of P. We prove that the ith homology of this mapping class

group is independent of n in the range n>2i+1. Our theorem moreover applies to

certain subgroups of the mapping class group and include, as special cases,

homological stability for the automorphism groups of free groups and of other

free products, for the symmetric groups and for wreath products with symmetric

groups.

 

Fri, 04 May 2007
16:30
L2

Linear equations in primes

Professor Ben Green
(University of Cambridge)
Abstract

I shall report on a programme of research which is joint with Terence Tao. Our

goal is to count the number of solutions to a system of linear equations, in

which all variables are prime, in as much generality as possible. One success of

the programme so far has been an asymptotic for the number of four-term

arithmetic progressions p_1 < p_2 < p_3 < p_4 <= N of primes, defined by the

pair of linear equations p_1 + p_3 = 2p_2, p_2 + p_4 = 2p_3. The talk will be

accessible to a general audience.

Fri, 04 May 2007
15:15
L3

Partially commutative groups: divisibility, orthogonal systems and universal theory.

Andrew Duncan
(Newcastle)
Abstract
  I shall describe some joint work with Vladimir Remeslennikov and Ilia Kazachkov. Partially commutative groups are groups given by a presentation determined by a graph: vertices are generators and edges define commutation relations. Divisbility and orthogonal systems are tools developed to study these groups. Using them we have descriptions of centralisers of subsets, a good understanding of the centraliser lattice in terms of the underlying graph and have made good progress towards classifying the universal theory of these groups as well as their automorphism groups.
Thu, 03 May 2007
16:15
Fisher Room of NAPL

TBA

Yang-Hui He
(Oxford)
Thu, 03 May 2007

14:00 - 15:00
Comlab

Matrix Computations and the secular equation

Prof Gene Golub
(Stanford University)
Abstract

The "secular equation" is a special way of expressing eigenvalue

problems in a variety of applications. We describe the secular

equation for several problems, viz eigenvector problems with a linear

constraint on the eigenvector and the solution of eigenvalue problems

where the given matrix has been modified by a rank one matrix. Next we

show how the secular equation can be approximated by use of the

Lanczos algorithm. Finally, we discuss numerical methods for solving

the approximate secular equation.

Mon, 30 Apr 2007
17:00
L1

On some semi-explicit quasiconvex functions with prescribed zero sets

Kewei Zhang
(Sussex)
Abstract

 

For a given Lipschitz graph over a subspace without rank-one matrices with

reasonably small Lipschitz constant, we construct quasiconvex functions of

quadratic growth whose zero sets are exactly the Lipschitz graph by using a

translation method. The gradient of the quasiconvex function is strictly

quasi-monotone. When the graph is a smooth compact manifold, the quasiconvex

function equals the squared distance function near the graph.

The corresponding variational integrals satisfy the Palais-Smale compactness

condition under the homogeneous natural boundary condition.

 

Mon, 30 Apr 2007
15:45
DH 3rd floor SR

Stochastic flows, panar aggregation and the Brownian web

Dr Amanda Turner
(University of Cambridge)
Abstract

 

Diffusion limited aggregation (DLA) is a random growth model which was

originally introduced in 1981 by Witten and Sander. This model is prevalent in

nature and has many applications in the physical sciences as well as industrial

processes. Unfortunately it is notoriously difficult to understand, and only one

rigorous result has been proved in the last 25 years. We consider a simplified

version of DLA known as the Eden model which can be used to describe the growth

of cancer cells, and show that under certain scaling conditions this model gives

rise to a limit object known as the Brownian web.

Mon, 30 Apr 2007
14:15
DH 3rd floor SR

Parabolic Anderson model: Localisation of mass in random media

Dr Nadia Sidorova
(University of Bath)
Abstract

 

We study the parabolic Anderson problem, i.e., the heat equation on the d-dimentional

integer lattice with independent identically distributed random potential and

localised initial condition. Our interest is in the long-term behaviour of the

random total mass of the unique non-negative solution, and we prove the complete

localisation of mass for potentials with polynomial tails.

 

Mon, 30 Apr 2007
12:00
L3

D-brane superpotentials and RG flows on the quintic

Ilka Brunner
(ETH Zurich)
Abstract
    The behaviour of D2-branes on the quintic under complex structure deformations is analysed by combining Landau-Ginzburg techniques with methods from conformal field theory. It is shown that the boundary renormalisation group flow induced by the bulk deformations is realised as a gradient flow of the effective space time superpotential which is calculated explicitly to all orders in the boundary coupling constant.