Thu, 05 Nov 2015
17:30
L6

Decidability of the Zero Problem for Exponential Polynomials

James Worrell
(Computing Laboratory, Oxford)
Abstract

We consider the decision problem of determining whether an exponential
polynomial has a real zero.  This is motivated by reachability questions
for continuous-time linear dynamical systems, where exponential
polynomials naturally arise as solutions of linear differential equations.

The decidability of the Zero Problem is open in general and our results
concern restricted versions.  We show decidability of a bounded
variant---asking for a zero in a given bounded interval---subject to
Schanuel's conjecture.  In the unbounded case, we obtain partial
decidability results, using Baker's Theorem on linear forms in logarithms
as a key tool.  We show also that decidability of the Zero Problem in full
generality would entail powerful new effectiveness results concerning
Diophantine approximation of algebraic numbers.

This is joint work with Ventsislav Chonev and Joel Ouaknine.

Thu, 05 Nov 2015

16:00 - 17:00
C5

Deformation K-theory

Simon Gritschacher
(Oxford)
Abstract

Deformation K-theory was introduced by G. Carlsson and gives an interesting invariant of a group G encoding higher homotopy information about its representation spaces. Lawson proved a relation between this object and a homotopy theoretic analogue of the representation ring. This talk will not contain many details, instead I will outline some basic constructions and hopefully communicate the main ideas.
 

Thu, 05 Nov 2015

16:00 - 17:30
L4

On multi-dimensional risk sharing problems

Guillaume Carlier
(Université Paris Dauphine)
Abstract

A well-known result of Landsberger and Meilijson says that efficient risk-sharing rules for univariate risks are characterized by a so-called comonotonicity condition. In this talk, I'll first discuss a multivariate extension of this result (joint work with R.-A. Dana and A. Galichon). Then I will discuss the restrictions (in the form of systems of nonlinear PDEs) efficient risk sharing imposes on individual consumption as a function of aggregate consumption. I'll finally give an identification result on how to recover preferences from the knowledge of the risk sharing (joint work with M. Aloqeili and I. Ekeland).

Thu, 05 Nov 2015

16:00 - 17:00
L5

Around the Möbius function

Kaisa Matomäki
(University of Turku)
Abstract

The Möbius function plays a central role in number theory; both the prime number theorem and the Riemann Hypothesis are naturally formulated in terms of the amount of cancellations one gets when summing the Möbius function. In a recent joint work with Maksym Radziwill we have shown that the sum of the Möbius function exhibits cancellation in "almost all intervals" of arbitrarily slowly increasing length. This goes beyond what was previously known conditionally on the Riemann Hypothesis. Our result holds in fact in much greater generality, and has several further applications, some of which I will discuss in the talk. For instance the general result implies that between a fixed number of consecutive squares there is always an integer composed of only "small" prime factors. This settles a conjecture on "smooth" or "friable" numbers and is related to the running time of Lenstra's factoring algorithm.

Thu, 05 Nov 2015

16:00 - 17:00
L3

Acoustic liners in aircraft engines

Ed Brambley
(Cambridge)
Abstract

Noise limits are one of the major constraints when designing
aircraft engines.  Acoustic liners are fitted in almost all civilian
turbofan engine intakes, and are being considered for use elsewhere in a
bid to further reduce noise.  Despite this, models for acoustic liners
in flow have been rather poor until recently, with discrepancies of 10dB
or more.  This talk will show why, and what is being done to model them
better.  In the process, as well as mathematical modelling using
asymptotics, we will show that state of the art Computational
AeroAcoustics simulations leave a lot to be desired, particularly when
using optimized finite difference stencils.

Thu, 05 Nov 2015

12:00 - 13:00
L6

Ancient Solutions to Navier-Stokes Equations in Half Space

Tobias Barker
(University of Oxford)
Abstract

The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin

Wed, 04 Nov 2015
16:00
C1

Isometries of CAT(0) Spaces

Giles Gardam
(Oxford)
Abstract

This talk will be an easy introduction to some CAT(0) geometry. Among other things, we'll see why centralizers in groups acting geometrically on CAT(0) spaces split (at least virtually). Time permitting, we'll see why having a geometric action on a CAT(0) space is not a quasi-isometry invariant.

 

Wed, 04 Nov 2015
15:00
L4

On the concrete hardness of Learning with Errors

Rachel Player
(Royal Holloway, University of London)
Abstract

The Learning with Errors (LWE) problem has become a central building block of modern cryptographic constructions. We will discuss hardness results for concrete instances of LWE. In particular, we discuss algorithms proposed in the literature and give the expected resources required to run them. We consider both generic instances of LWE as well as small secret variants. Since for several methods of solving LWE we require a lattice reduction step, we also review lattice reduction algorithms and propose a refined model for estimating their running times. We also give concrete estimates for various families of LWE instances, provide a Sage module for computing these estimates and highlight gaps in the knowledge about algorithms for solving the Learning with Errors problem.

Tue, 03 Nov 2015

16:00 - 17:00
C5

Equivalence relations for quadratic forms

Detlev Hoffmann
(Dortmund)
Abstract

We investigate equivalence relations for quadratic forms that can be expressed in terms of algebro-geometric properties of their associated quadrics, more precisely, birational, stably birational and motivic equivalence, and isomorphism of quadrics. We provide some examples and counterexamples and highlight some important open problems.

Tue, 03 Nov 2015

15:45 - 16:45
L4

Poles of maximal order of Igusa zeta functions

Johannes Nicaise
(Imperial)
Abstract

Igusa's p-adic zeta function $Z(s)$ attached to a polynomial $f$ in $N$ variables is a meromorphic function on the complex plane that encodes the numbers of solutions of the equation $f=0$ modulo powers of a prime $p$. It is expressed as a $p$-adic integral, and Igusa proved that it is rational in $p^{-s}$ using resolution of singularities and the change of variables formula. From this computation it is immediately clear that the order of a pole of $Z(s)$ is at most $N$, the number of variables in $f$. In 1999, Wim Veys conjectured that the only possible pole of order $N$ of the so-called topological zeta function of $f$ is minus the log canonical threshold of $f$. I will explain a proof of this conjecture, which also applies to the $p$-adic and motivic zeta functions. The proof is inspired by non-archimedean geometry and Mirror Symmetry, but the main technique that is used is the Minimal Model program in birational geometry. This talk is based on joint work with Chenyang Xu.

Tue, 03 Nov 2015

14:30 - 15:00
L5

Block Preconditioning for Incompressible Two-Phase Flow

Niall Bootland
(University of Oxford)
Abstract

Modelling two-phase, incompressible flow with level set or volume-of-fluid formulations results in a variable coefficient Navier-Stokes system that is challenging to solve computationally. In this talk I will present work from a recent InFoMM CDT mini-project which looked to adapt current preconditioners for one-phase Navier-Stokes flows. In particular we consider systems arising from the application of finite element methodology and preconditioners which are based on approximate block factorisations. A crucial ingredient is a good approximation of the Schur complement arising in the factorisation which can be computed efficiently.

Tue, 03 Nov 2015
14:30
L6

Transference for the Erdős–Ko–Rado theorem

Bhargav Narayanan
(University of Cambridge)
Abstract

The ErdősKoRado theorem is a central result in extremal set theory which tells us how large uniform intersecting families can be. In this talk, I shall discuss some recent results concerning the 'stability' of this result. One possible formulation of the ErdősKoRado theorem is the following: if $n \ge 2r$, then the size of the largest independent set of the Kneser graph $K(n,r)$ is $\binom{n-1}{r-1}$, where $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\dots,n\}$ in which two sets are adjacent if and only if they are disjoint. The following will be the question of interest. Delete the edges of the Kneser graph with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? I shall discuss an affirmative answer to this question in a few different regimes. Joint work with Bollobás and Raigorodskii, and Balogh and Bollobás.

Tue, 03 Nov 2015

14:15 - 15:15
L4

Open invariants and crepant transformations

Renzo Cavalieri
(Colorado State)
Abstract

The question that the Crepant Resolution Conjecture (CRC) wants to address is: given an orbifold X that admits a repant resolution Y, can we systematically compare the Gromov-Witten theories of the two spaces? That this should happen was first observed by physicists and the question was imported into mathematics by Y.Ruan, who posited it as the search for an isomorphism in the quantum cohomologies of the two spaces. In the last fifteen years this question has evolved and found different formulations which various degree of generality and validity. Perhaps the most powerful approach to the CRC is through Givental's formalism. In this case, Coates, Corti, Iritani and Tseng propose that the CRC should consist of the natural comparison of geometric objects constructed from the GW potential fo the space. We explore this approach in the setting of open GW invariants. We formulate an open version of the CRC using this formalism, and make some verifications. Our approach is well tuned with Iritani's approach to the CRC via integral structures, and it seems to suggest that open invariants should play a prominent role in mirror symmetry. 

Tue, 03 Nov 2015

14:00 - 14:30
L5

Collocation-based hybrid numerical-asymptotic methods for high frequency wave scattering

David Hewett
(University of Oxford)
Abstract

Wave scattering problems arise in numerous applications in acoustics, electromagnetics and linear elasticity. In the boundary element method (BEM) one reformulates the scattering problem as an integral equation on the scatterer boundary, e.g. using Green’s identities, and then seeks an approximate solution of the boundary integral equation (BIE) from some finite-dimensional approximation space. The conventional choice is a space of piecewise polynomials; however, in the “high frequency” regime when the wavelength is small compared to the size of the scatterer, it is computationally expensive to resolve the highly oscillatory wave solution in this way. The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost by enriching the BEM approximation space with oscillatory functions, carefully chosen to capture the high frequency asymptotic solution behaviour. To date, the HNA methodology has been implemented almost exclusively in a Galerkin variational framework. This has many attractive features, not least the possibility of proving rigorous convergence results, but has the disadvantage of requiring numerical evaluation of high dimensional oscillatory integrals. In this talk I will present the results of some investigations carried out with my MSc student Emile Parolin into collocation-based implementations, which involve lower-dimensional integrals, but appear harder to analyse in terms of convergence and stability.

Mon, 02 Nov 2015
17:00
L3

Non-Archimedean Analytic Geometry..etc.

Nicholas Wentzlaff
Abstract

I want to give an introduction into non-Archimedean Geometry, and show how Model Theory was used to prove the recent results of Hrushovski-Loeser on topological properties of analytic spaces. This may also be of interest with view towards Zilber's programme for syntax-semantics dualities.

Mon, 02 Nov 2015

16:00 - 17:00
C2

The Arithmetic of K3 Surfaces

Christopher Nicholls
(Oxford)
Abstract

The study of rational points on K3 surfaces has recently seen a lot of activity. We discuss how to compute the Picard rank of a K3 surface over a number field, and the implications for the Brauer-Manin obstruction.

Mon, 02 Nov 2015

16:00 - 17:00
L5

Sharp Trace-Sobolev inequalities of order 4

Antonio Ache
(Princeton University)
Abstract

We establish sharp Sobolev inequalities of order four on Euclidean $d$-balls for $d$ greater than or equal to four. When $d=4$, our inequality generalizes the classical second order Lebedev-Milin inequality on Euclidean $2$-balls. Our method relies on the use of scattering theory on hyperbolic $d$-balls. As an application, we charcaterize the extremals of the main term in the log-determinant formula corresponding to the conformal Laplacian coupled with the boundary Robin operator on Euclidean $4$-balls. This is joint work with Alice Chang. 

Mon, 02 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Pfaffians, 1-d particle systems and random matrices.

ROGER TRIBE
(University of Warwick)
Abstract

Abstract: Joint work with Oleg Zaboronsky (Warwick).

Some one dimensional nearest neighbour particle systems are examples of Pfaffian point processes - where all intensities are determined by a single kernel.In some cases these kernels have appeared in the random matrix literature (where the points are the positions of eigenvalues). We are attempting to use random matrix tools on the particle sytems, and particle tools on the random matrices.

 

 

Mon, 02 Nov 2015
15:45
L6

Graphical calculus for 3-dimensional TQFTs

Bruce Bartlett
(Oxford)
Abstract

Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.

Mon, 02 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Longest increasing path within the critical strip

MATHEW JOSEPH
((University of Sheffield))
Abstract

Abstract:   Consider the square $[0,n]^2$ with points from a Poisson point process of intensity 1 distributed within it. In a seminal work, Baik, Deift and Johansson proved that the number of points $L_n$ (length) on a maximal increasing path (an increasing path that contains the most number of points), when properly centered and scaled, converges to the Tracy-Widom distribution. Later Johansson showed that all maximal paths lie within the strip of width $n^{\frac{2}{3} +\epsilon}$ around the diagonal with probability tending to 1 as $n \to \infty$. We shall discuss recent work on the Gaussian behaviour of the length $L_n^{(\gamma)}$ of a maximal increasing path restricted to lie within a strip of width $n^{\gamma}, \gamma< \frac{2}{3}$.

 

Mon, 02 Nov 2015
14:15
L4

On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Aazami
(IPMU)
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+).  We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases.  For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91).  Similar obstructions for the other cases will also be discussed.  Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism.  Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures.